Extended knowledge of 3-Nitrophthalonitrile

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 51762-67-5, name is 3-Nitrophthalonitrile, A new synthetic method of this compound is introduced below., Application In Synthesis of 3-Nitrophthalonitrile

2-(3,4-Dimethoxyphenyl)ethanol (2.10?g, 11.56?mmol) was stirred in dry DMSO in the presence of finely ground anhydrous K2CO3 (?2.00?g, excess). After stirring for 30?min under an N2 atmosphere, 3-nitrophthalonitrile (2.00?g, 11.56?mmol) was added to this mixture dropwise. The reaction mixture was monitored by TLC (CHCl3) for 3?days at ca. 50?C. The mixture was then cooled to ambient temperature and poured into ca. 250?mL ice-water. After completion of the precipitation, the solid product was filtered and purified by column chromatography using a mixture of CHCl3:MeOH (2:1 v/v) as the eluent. The obtained products are excellently soluble in CHCl3, THF, DMF and DMSO. Yield of 2: 0.69?g (78%), m.p.: 138?C. Anal. Calc. for C18H16N2O3 (308.33?g/mol): C, 70.12; H, 5.23; N, 9.09. Found: C, 70.09; H, 5.20; N, 9.05%. FT-IR (thin film) nu/cm-1: 3094, 2968, 2832, 2241, 1608, 1582, 1530, 1464, 1405, 1378, 1269, 1159, 1033, 960, 813, 459. 1H NMR ([d6]-DMSO) delta, ppm: 8.10, 7.80, 7.62, 6.85, 6.80, 6.65, 4.40, 3.80, 3.00. 13C NMR ([d6]-DMSO) delta, ppm: 161.5, 149.1, 148.1, 137.1, 130.7, 121.3, 119.1, 116.4, 116.0, 113.6, 113.4, 112.4, 71.1, 63.1, 56.1, 55.9, 34.8.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.