Mannarsamy, Maruthupandi team published research in Catalysis Letters in 2022 | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., COA of Formula: C4H5NO2

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. COA of Formula: C4H5NO2.

Mannarsamy, Maruthupandi;Prabusankar, Ganesan research published 《 Highly Active Copper(I)-Chalcogenone Catalyzed Knoevenagel Condensation Reaction Using Various Aldehydes and Active Methylene Compounds》, the research content is summarized as follows. First copper(I) chalcogenones catalyzed Knoevenagel Condensation reactions were reported. No illustration of the utilization of this copper-chalcogenone complex class in Knoevenagel Condensation catalysis can be found. Thus, copper(I) bis(benzimidazole-2-chalcogenone) catalysts [Cu(L1)4]+BF4 and [Cu(L2)4]+BF4 (L1 = bis(1-isopropyl-benzimidazole-2-selone)-3-ethyl; L2 = bis(1-isopropyl-benzimidazole-2-thione)-3-ethyl) were utilized as catalysts in the Knoevenagel Condensation reactions. These copper(I) chalcogenone catalysts have shown high efficiency for the catalytic Knoevenagel Condensation of aryl aldehydes and active methylene compounds In particular, [Cu(L2)4]+BF4, exhibited the best catalytic activities. The scope of the catalytic reactions was investigated with 22 different mols. The excellent catalytic activity was depicted for various types of substrates with either electron-rich or deficient aryl aldehydes. The present investigation features relatively mild reaction conditions with good functional group tolerance and excellent yields.

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., COA of Formula: C4H5NO2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts