Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Electric Literature of 1835-49-0.
Wan, Jingmeng;Nian, Mengjie;Yang, Chao;Ge, Kai;Liu, Junjie;Chen, Zhiquan;Duan, Jingui;Jin, Wanqin research published 《 Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer》, the research content is summarized as follows. Mixed matrix membranes (MMMs) incorporating porous materials received extensive attention for applications of gas separation, but the one shows significant high permeability and increased selectivity is rare. Here, we report a strategy of interface regulation in two groups of MMMs via formed H-bonding by a newly designed and ultrathin metal organic framework nanosheet (MOFN). The chem. stable MOFN (thickness: 5-8 nm) with lamellae of micrometre lateral dimensions was prepared from [Hf6] cluster and tricarboxylate ligand, where the capping mol. of formic acid coordinates with Hf4+ ion as H-bonding donor toward incorporated polymers and also acts as an anisotropic regulator for MOFN growth. The well-distributed MOFN in two polymers shows sharply promoted CO2 permeability (720 GPU and 2085 GPU), as well as enhanced separation factor, over wide pressure and temperature ranges that are suitable for CO2 capture from natural gas. This is because the H-bonding regulated polymer-MOFN alignments lead to contractile channel and abundant porosity, validated by Raman mapping and positron annihilation lifetime spectroscopy. This work not only gives rise two candidate membranes for selective CO2 removal from naturals gas, but also, more prospectively, deliveries a design philosophy for construction of advanced MMMs.
Electric Literature of 1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts