Tang, Jian-Hong team published research in iScience in 2022 | 20099-89-2

Recommanded Product: 4-(2-Bromoacetyl)benzonitrile, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Recommanded Product: 4-(2-Bromoacetyl)benzonitrile.

Tang, Jian-Hong;Han, Guanqun;Li, Guodong;Yan, Kaili;Sun, Yujie research published 《 Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal-organic framework via two-photon absorption》, the research content is summarized as follows. Photocatalysis under UV/visible light irradiation has emerged as one of the green methodologies for solar energy utilization and organic synthesis. These photocatalytic processes are typically initiated by one-photon-absorbing metal complexes or organic dyes. Nevertheless, the intrinsic restrictions of UV/visible light irradiation, such as shallow penetration in reaction solutions, competing absorption by substrates, and limited coverage of the solar spectrum, call for the development of innovative photocatalysts functioning under longer wavelength irradiation Herein, we report a ruthenium complex containing a metal-organic framework, MOF-Ru1, which can drive diverse organic reactions under 740 nm light irradiation following the two-photon absorption (TPA) process. Various organic transformations such as energy transfer, reductive, oxidative, and redox neutral reactions were realized using this heterogeneous hybrid photocatalyst. Overall, MOF-Ru1 represents an intriguing TPA photocatalyst active under near-IR light irradiation, paving a way for the efficient utilization of low-energy light and convenient photocatalyst recycling because of phase separation

Recommanded Product: 4-(2-Bromoacetyl)benzonitrile, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Tabassum, Sumaiya team published research in Materials Today: Proceedings in 2022 | 20099-89-2

SDS of cas: 20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Nitriles are found in many useful compounds. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Nitriles are found in many useful compounds. One of the most common occurrences of nitriles is in Nitrile rubber. SDS of cas: 20099-89-2.

Tabassum, Sumaiya;Govindaraju, Santhosh research published 《 Yttrium(III) oxide catalyzed facile synthesis of novel hydrazinyl thiazoles by multicomponent approach》, the research content is summarized as follows. Synthesis of novel hydrazinyl thiazoles I (R1 = 4-MeC6H4, 4-MeOC6H4, 4-BrC6H4, 4-ClC6H4, 4-NCC6H4; R2 = 4-methyl-2-thienyl, 5-methyl-2-furyl) by cyclocondensation reaction between substituted phenacyl bromides R1C(O)CH2Br, aromatic aldehydes R2CHO and thiosemicarbazide using yttrium(III) oxide as reusable catalyst in acetic acid is described. This chromatog.-free methodol. has several benefits such as being facile, atom economic and higher functional group tolerance, and it provides excellent yields in short reaction time.

SDS of cas: 20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Tabassum, Sumaiya team published research in Materials Today: Proceedings in 2021 | 105-34-0

Application of C4H5NO2, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Nitrile is any organic compound with a −C≡N functional group. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate.The prefix cyano- is used interchangeably with the term nitrile in literature. Application of C4H5NO2.

Tabassum, Sumaiya;Sunaja Devi, K. R.;Govindaraju, Santhosh research published 《 Nano ZnO@PEG catalyzed one-pot green synthesis of pyrano[2,3-d]pyrimidines in ethanol via one-pot multicomponent approach》, the research content is summarized as follows. A facile one-pot multicomponent protocol for the synthesis of bio-active pyrano[2,3-d]pyrimidine derivatives by a one-step condensation reaction of substituted aldehyde, malononitrile/methyl cyanoacetate, barbituric acid has been demonstrated using nano ZnO@PEG as a catalyst at room temperature The present approach offers several advantages, such as shorter reaction time, higher yields, and environmentally friendly. Easy isolation of products, absence of column chromatog. purification, use of com. available low-cost starting materials and reusability of the catalyst make the methodol. viable in organic synthesis.

Application of C4H5NO2, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Sun, Yunhao team published research in ChemistrySelect in 2022 | 1835-49-0

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , Product Details of C8F4N2

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Product Details of C8F4N2.

Sun, Yunhao;Niu, Qiang;Yang, Shize;Zhang, Pengfei research published 《 Observation of Cobalt Species Evolution in Mesoporous Carbon by In-Situ STEM-HAADF Imaging and Related Hydrogenation Process》, the research content is summarized as follows. Metal decorated-mesoporous carbons (MMCs) has attractive features from both mesoporous materials (large pore size, high pore volume) and metal species (reactive surface). Cobalt@mesoporous carbon (Co@MC) catalyst was successfully manufactured by mechanochem. synthesis method for hydrogenation of phenol to prepare cyclohexanone. Unlike traditional hard-templating and soft-templating methods, the essence of this strategy lies in the combination of carbonization and ligand-protected metal reduction By using Fourier transform-IR spectroscopy, X-ray diffraction and N2 adsorption-desorption, Co@MC catalyst was well studied. In particular, the effect of calcination temperature in terms of growth and aggregation of cobalt species was detailly explored by in-situ scanning transmission electron microscopy-high angle angular dark field. A series of mesoporous carbons with cobalt species readily tuned from clusters to nanoparticles were measured in phenol hydrogenation (Conv. Phenol: >99 %, Sel. Cyclohexanone: >99 %).

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , Product Details of C8F4N2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Sun, Yaru team published research in Sensors and Actuators, B: Chemical in 2022 | 3032-92-6

Name: 4-Ethynylbenzonitrile, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Nitrile groups in organic compounds can undergo a variety of reactions depending on the reactants or conditions. 3032-92-6, formula is C9H5N, Name is 4-Ethynylbenzonitrile. A nitrile group can be hydrolyzed, reduced, or ejected from a molecule as a cyanide ion. Name: 4-Ethynylbenzonitrile.

Sun, Yaru;Tang, Xiaochan;Li, Xiaobing;Kong, Xiuqi;Tian, Minggang;Wang, Yue;Dong, Baoli research published 《 PET-ESIPT-based fluorescent probes for revealing the fluctuation of peroxynitrite (ONOO) in living cells, zebrafishes and brain tissues》, the research content is summarized as follows. Peroxynitrite (ONOO) plays crucial roles in a variety of physiol. and pathol. processes in living systems, and therefore, real-time and in situ imaging of ONOO is of great significance to in-depth study its biol. roles. Herein, we have developed PET-ESIPT-based fluorescent probes (BCN and BCN-A) for the detection of ONOO in living cells, zebrafishes and brain tissues. BCN was a highly sensitive ONOO probe in which the fluorescence property of the fluorophore was simultaneously controlled by PET and ESIPT mechanisms, and transformed to BCN-A via acetylation. Especially, BCN showed large Stokes shift in response to ONOO, and displayed high selectivity to ONOO. BCN-A employed the acetate group to switch off ESIPT process of the fluorophore and improve the membrane permeability. In living cells, BCN-A released an ONOO-responsive probe (BCN) by the hydrolysis of esterase, and then detected ONOO. Biol. imaging demonstrated that although both metformin and rotenone are mitochondrial complex I inhibitors, metformin can increase the generation of ONOO while rotenone had no significant influence on the generation of ONOO in living cells and zebrafishes. Moreover, the amygdala and perirhinal/entorhinal cortex in the brain of depressive mouse both showed increasing fluorescence intensity relative to those of normal mouse, which suggested that the LPS-induced depressive disorder could result in the generation of ONOO in the two brain areas of mouse. We expect that the probes (BCN and BCN-A) could extensively serve as the powerful mol. tools to investigate the biol. roles of ONOO for the in-depth study of drug mechanism and depressive disorder.

Name: 4-Ethynylbenzonitrile, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Su, Lebin team published research in Organic Letters in 2022 | 3032-92-6

3032-92-6, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., Product Details of C9H5N

Nitriles are found in many useful compounds. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons. 3032-92-6, formula is C9H5N, Name is 4-Ethynylbenzonitrile. Nitriles are found in many useful compounds. One of the most common occurrences of nitriles is in Nitrile rubber. Product Details of C9H5N.

Su, Lebin;Xie, Shimin;Dong, Jianyu;Pan, Neng;Yin, Shuang-Feng;Zhou, Yongbo research published 《 Copper-Catalyzed 6-endo-dig Cyclization-Coupling of 2-Bromoaryl Ketones and Terminal Alkynes toward Naphthyl Aryl Ethers in Water》, the research content is summarized as follows. The cyclization-coupling reaction of 2-bromoaryl ketones 2-Br-4-R-5-R1C6H2C(O)Me (R = H, Cl, F, MeO; R1 = H, Cl, Me), 1-(pyridin-3-yl)ethan-1-one and terminal alkynes R2CCH (R2 = Ph, 4-bromophenyl, pyridin-3-yl, etc.) is first realized by copper catalysis, which produces polyfunctional naphthyl aryl ethers I (X = CH, N) in moderate to excellent yields with broad substrate scope and good functional group tolerance. This reaction proceeds via 6-endo-dig cyclization and C(sp2)-O coupling using green H2O as the unique solvent and 5-bromopyrimidin-2-amine as the critical additive. Mechanistically, a unique Cu(III)-acetylide probably is the key intermediate, which allows exclusive 6-endo-dig selectivity.

3032-92-6, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., Product Details of C9H5N

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Strauss, Marie E. team published research in Chemistry (Basel, Switzerland) in 2022 | 3032-92-6

HPLC of Formula: 3032-92-6, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.3032-92-6, formula is C9H5N, Name is 4-Ethynylbenzonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. HPLC of Formula: 3032-92-6.

Strauss, Marie E.;Santaloci, Taylor J.;Fortenberry, Ryan C. research published 《 Valence-, Dipole- and Quadropole-Bound Electronically Excited States of Closed-Shell Anions Formed by Deprotonation of Cyano- and Ethynyl-Disubstituted Polycyclic Aromatic Hydrocarbons》, the research content is summarized as follows. Dicyano-functionalized benzene and naphthalene anion derivatives exhibit a relatively rich population of electronically excited states in stark contrast to many assumptions regarding the photophysics of anions in general. The present work has quantum chem. analyzed the potential electronically excited states of closed-shell anions created by replacing hydrogen atoms with valence-bound lone pairs in benzene and naphthalene difunctionalized with combinations of -CN and -C2H. Dicyanobenzene anion derivatives can exhibit dipole-bound excited states as long as the cyano groups are not in para position to one another. This also extends to cyanoethynylbenzene anions as well as deprotonated dicyano- and cyanoethynylnaphthalene anion derivatives Diethynyl functionalization is less consistent. While large dipole moments are created in some cases for deprotonation on the -C2H group itself, the presence of electronically excited states beyond those that are dipole-bound is less consistent. Beyond these general trends, 2-dicyanonaphthalene-34 gives strong indication for exhibiting a quadrupole-bound excited state, and the 1-cyanoethynylnaphthalene-29 and -36 anion derivatives are shown to possess as many as two valence-bound excited states and one dipole-bound excited state. These photophys. properties may have an influence on regions where polycyclic aromatic hydrocarbons are known to exist such as in various astrochem. environments or even in combustion flames.

HPLC of Formula: 3032-92-6, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Srivishnu, K. S. team published research in Journal of Porphyrins and Phthalocyanines in 2022 | 31643-49-9

Category: nitriles-buliding-blocks, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Nitrile is any organic compound with a −C≡N functional group. 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. Category: nitriles-buliding-blocks.

Srivishnu, K. S.;Naresh, Madarapu;Laxmikanth Rao, J.;Giribabu, Lingamallu research published 《 Photo-induced intramolecular electron transfer in phenoxazine-phthalocyanine donor-acceptor systems》, the research content is summarized as follows. Donor-Acceptor (D-A) systems based on phenoxazine – phthalocyanine (PXZ-Pc) and phenoxazine – zinc phthalocyanine (PXZ-ZnPc) have been designed and synthesized. Both D-A systems are characterized using various spectroscopic and electrochem. techniques including in-situ methods. Optical absorption studies suggest that both Soret and Q bands of these D-A systems are hypsochromically and bathochromically shifted, when compared to its individual constituents. The study supported by theor. calculations shows clearly that there exists a negligible electronic communication in the ground state between donor phenoxazine and acceptor phthalocyanine. However, attractively, both D-A systems exhibit noteworthy fluorescence emission quenching (90-99%) of the phthalocyanine emission compared to its reference compounds The fluorescence emission quenching featured at the excited-state intramol. photoinduced electron transfer from ground state of phenoxazine to the excited state of phthalocyaine/zinc phthalocyanine. The rates of electron-transfer (kET) of these D-A systems are found in the range of 5.7 x 108 to 2.8 x 109 s-1 and are according to solvent polarity.

Category: nitriles-buliding-blocks, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Song, Dan team published research in Organic Chemistry Frontiers in 2021 | 20099-89-2

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Synthetic Route of 20099-89-2

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Synthetic Route of 20099-89-2.

Song, Dan;Huang, Changfeng;Liang, Peishi;Zhu, Baofu;Liu, Xiang;Cao, Hua research published 《 Lewis acid-catalyzed regioselective C-H carboxamidation of indolizines with dioxazolones via an acyl nitrene type rearrangement》, the research content is summarized as follows. An efficient, direct, and novel Lewis acid-catalyzed regioselective C-H carboxamidation of indolizines with dioxazolones via an acyl nitrene type rearrangement under metal-free conditions was documented. A diverse array of indolizine-3-carboxamides I [R = Ph, 4-MeC6H4, 2-naphthyl, etc.; R1 = H, 8-Me, 6-Et, etc.; R2 = Ph, 4-MeC6H4, 2-FC6H4, etc.] were achieved in moderate to good yields with wide substrate scope. In these transformations, isocyanatobenzene was formed by the ring opening of dioxazolones and a subsequent Curtius-type rearrangement, which could be harnessed in C-H carboxamidation of N-heterocycles. The present protocol is satisfactorily complementary to nitrene transfer chem. and C-H functionalization of N-heterocycles. Furthermore, photophys. experiments revealed that a few compounds exhibited high fluorescence absorption and emission intensity.

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Synthetic Route of 20099-89-2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Skrodzki, Maciej team published research in Journal of Catalysis in 2022 | 3032-92-6

Product Details of C9H5N, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.3032-92-6, formula is C9H5N, Name is 4-Ethynylbenzonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Product Details of C9H5N.

Skrodzki, Maciej;Ortega Garrido, Victor;Csaky, Aurelio G.;Pawluc, Piotr research published 《 Searching for highly active cobalt catalysts bearing Schiff base ligands for Markovnikov-selective hydrosilylation of alkynes with tertiary silanes》, the research content is summarized as follows. The search for simple and easy-to-synthesize ligands for bench stable cobalt (pre)catalysts that would ensure high activity and selectivity in alkyne hydrosilylation reactions is an interesting current challenge. Herein, we report that a cobalt(II) complex bearing pyrimidine-imine-2H-imidazole ligand activated by LiHBEt3 exhibits not only high catalytic activity, but also unprecedented tolerance towards tertiary silanes in highly regioselective Markovnikov hydrosilylation of aliphatic and aromatic terminal alkynes to give α-vinylsilanes. In addition, a variety of 1-aryl-2-(trimethylsilyl)acetylenes have been hydrosilylated efficiently by diphenylsilane in the presence of [Co(L)Cl2]/LiHBEt3 catalytic system to yield (E)-1-aryl-1,2-bis(silyl)ethenes with high selectivity. Such selectivity is very rarely observed for cobalt-catalyzed hydrosilylation of silylacetylenes.

Product Details of C9H5N, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts