Mei, Lan team published research in Dyes and Pigments in 2021 | 31643-49-9

Reference of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Reference of 31643-49-9.

Mei, Lan;Cui, Xu;Wei, Juncheng;Duan, Qian;Li, Yanhui research published 《 Metal phthalocyanine-based conjugated microporous polymer/carbon nanotube composites as flexible electrodes for supercapacitors》, the research content is summarized as follows. Conjugated microporous polymers with active functional groups have attracted more and more attentions in energy conversion systems. However, their low elec. conductivity results in low capacitance, thus limiting their practical application. Herein, conjugated microporous polymer with triphenylamine aldehyde linked to metal phthalocyanines (MNC) is synthesized and then compounded with high-conductivity carbon nanotubes (CNTs) (denoted as CoNCCs) by vacuum filtration. Moreover, CoNCCs exhibit flexibility, which could be served as a self-standing and binder-free flexible electrode of supercapacitors. As a result, the optimized CoNCCs as the flexible electrode show high specific capacitance of 213.4 F g-1 at 0.5 A g-1. In addition, the higher capacity retention rate 85.3% can be retained after 1750 cycles at 20 A g-1. The good electrochem. properties can be attributed to the synergistic effect and strong dual-phase interaction between MNC and CNTs. This work opens the way to develop high-performance and low environmental footprint organic electrode materials for SCs.

Reference of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Meena, Mahendra Kumar team published research in Journal of Biomolecular Structure and Dynamics in 2022 | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., COA of Formula: C4H5NO2

Nitrile is any organic compound with a −C≡N functional group. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate.The prefix cyano- is used interchangeably with the term nitrile in literature. COA of Formula: C4H5NO2.

Meena, Mahendra Kumar;Kumar, Durgesh;Jayaraj, Abhilash;Kumar, Ajay;Kumari, Kamlesh;Katata-Seru, L. M.;Bahadur, Indra;Kumar, Vinod;Sherawat, Anjali;Singh, Prashant research published 《 Designed thiazolidines: an arsenal for the inhibition of nsP3 of CHIKV using molecular docking and MD simulations》, the research content is summarized as follows. Chikungunya virus belongs to alpha virus and its infection in humans causes fever, known as chikungunya fever. It is a sudden onset of fever and may affect humans badly. The mode of transmission to human occurs due to the biting of the mosquitoes. Till date, thousands of humans are affected from this virus throughout the world. As on date, no promising medicine or vaccine is available in the market to cure from this viral infection. Therefore, there is a need of promising candidate against the nsp3 of CHIKV. In the present work, a library of the compounds are designed based on the product obtained in a multi-component reaction. Then, the designed compounds are filtered based on binding energy against the nsp3 of CHIKV obtained using mol. docking. Further, to understand the interaction of nsp3 of CHIKV and screened compound, CMPD474, the mol. dynamics MD) simulations at different temperatures, i.e., 300, 325, 350, 375, and 400 K is performed. The binding or the formation of the complex is studied through different trajectories obtained from MD simulations. The accurate information for the binding energy is determined by performing MM-GBSA calculations and the best inhibition was observed at 300 K as the change in free energy for the formation of the complex is -7.0523 kcal/mol.Communicated by Ramaswamy H. Sarma

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., COA of Formula: C4H5NO2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Mathew, Bini team published research in European Journal of Medicinal Chemistry in 2021 | 20099-89-2

Quality Control of 20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Quality Control of 20099-89-2.

Mathew, Bini;Ruiz, Pedro;Dutta, Shilpa;Entrekin, Jordan T.;Zhang, Sixue;Patel, Kaval D.;Simmons, Micah S.;Augelli-Szafran, Corinne E.;Cowell, Rita M.;Suto, Mark J. research published 《 Structure-activity relationship (SAR) studies of N-(3-methylpyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (SRI-22819) as NF-κB activators for the treatment of ALS》, the research content is summarized as follows. ALS is a rare type of progressive neurol. disease with unknown etiol. It results in the gradual degeneration and death of motor neurons responsible for controlling the voluntary muscles. Identification of mutations in the superoxide dismutase (SOD) 1 gene has been the most significant finding in ALS research. SOD1 abnormalities have been associated with both familial as well as sporadic ALS cases. SOD2 is a highly inducible SOD that performs in concurrence with SOD1 to detoxify ROS. Induction of SOD2 can be obtained through activation of NF-κBs. We previously reported that SRI-22819 increases NF-κB expression and activation in vitro, but it has poor ADME properties in general and has no oral bioavailability. Our initial studies were focused on direct modifications of SRI-22819. There were active compounds identified but no improvement in microsomal stability was observed In this context, we focused on making more significant structural changes in the core of the mol. Ataluren, an oxadiazole compound that promotes read-through and expression of dystrophin in patients with Duchenne muscular dystrophy, bears some structural similarity to SRI-22819. Thus, we synthesized a series of SRI-22819 and Ataluren (PTC124) hybrid compounds Several compounds from this series exhibited improved activity, microsomal stability and lower calculated polar surface area (PSA). This manuscript describes the synthesis and biol. evaluation of SRI-22819 analogs and its hybrid combination with Ataluren.

Quality Control of 20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Maryasov, M. A. team published research in Russian Journal of General Chemistry in 2020 | 105-34-0

Product Details of C4H5NO2, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Product Details of C4H5NO2.

Maryasov, M. A.;Davydova, V. V.;Nasakin, O. E.;Shteingolts, S. A.;Lodochnikova, O. A. research published 《 Synthesis of Aminophenylpolycarbonitriles from Arylidenemalononitriles by the Michael Reaction》, the research content is summarized as follows. The reactions of arylidenemalononitriles RCH=C(CN)CN (R = H, Ph, 4-methoxyphenyl, 4-hydroxyphenyl, 4-nitrophenyl) with malononitrile, Me cyanoacetate and cyanoacetamide yielded aminophenyldi- and tricarbonitriles I (R1 = CN, CONH2, COOMe). Formation of these compounds I occurs through the dehydrocyanation step of the corresponding aminohexenepolycarbonitriles II.

Product Details of C4H5NO2, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Mao, Kaimin team published research in Asian Journal of Organic Chemistry in 2021 | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Safety of Methyl 2-cyanoacetate

Nitrile groups in organic compounds can undergo a variety of reactions depending on the reactants or conditions. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. A nitrile group can be hydrolyzed, reduced, or ejected from a molecule as a cyanide ion. Safety of Methyl 2-cyanoacetate.

Mao, Kaimin;Dai, Lei;Chen, Ang;Liu, Yun;Liu, Xiaoqin;Wang, Chang;Rong, Liangce research published 《 Radical Annulation for the Synthesis of Cyclopenta[c]chromene Derivatives》, the research content is summarized as follows. A Cu-catalyzed oxidative radical [2+2+1] annulation reaction of phenol-linked 1,7-enynes with α-active methylene nitrile was described, affording cyclopenta[c]chromene derivatives bearing several functional groups in excellent yields. The wide substrate range, good group tolerance and easy amplification experiments indicated the practicability of this synthesis strategy. This process provided an alternative convenient route for the synthesis of cyclopenta[c]chromene derivatives

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Safety of Methyl 2-cyanoacetate

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Mantareva, Vanya team published research in Current Issues in Molecular Biology in 2022 | 31643-49-9

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Recommanded Product: 4-Nitrophthalonitrile

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Recommanded Product: 4-Nitrophthalonitrile.

Mantareva, Vanya;Kussovski, Vesselin;Orozova, Petya;Angelov, Ivan;Durmus, Mahmut;Najdenski, Hristo research published 《 Palladium Phthalocyanines Varying in Substituents Position for Photodynamic Inactivation of Flavobacterium hydatis as Sensitive and Resistant Species》, the research content is summarized as follows. Antimicrobial photodynamic therapy (aPDT) has been considered as a promising methodol. to fight the multidrug resistance of pathogenic bacteria. The procedure involves a photoactive compound (photosensitizer), the red or near IR spectrum for its activation, and an oxygen environment. In general, reactive oxygen species are toxic to biomols. which feature a mechanism of photodynamic action. The present study evaluates two clin. isolates of Gram-neg. Flavobacteriumhydatis (F. hydatis): a multidrug resistant (R) and a sensitive (S) strain. Both occur in farmed fish, leading to the big production losses because of the inefficacy of antibiotics. Palladium phthalocyanines (PdPcs) with methylpyridiloxy groups linked peripherally (pPdPc) or non-peripherally (nPdPc) were studied with full photodynamic inactivation for 5.0 μM nPdPc toward both F. hydatis, R and S strains (6 log), but with a half of this value (3 log) for 5.0 μM pPdPc and only for F. hydatis, S. In addition to the newly synthesized PdPcs as a “pos. control” was applied a well-known highly effective zinc phthalocyanine (ZnPcMe). ZnPcMe showed optimal photocytotoxicity for inactivation of both F. hydatis R and S. The present study is encouraging for a further development of aPDT with phthalocyanines as an alternative method to antibiotic medication to keep under control the harmful pathogens in aquacultures′ farms.

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Recommanded Product: 4-Nitrophthalonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Mannarsamy, Maruthupandi team published research in Catalysis Letters in 2022 | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., COA of Formula: C4H5NO2

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. COA of Formula: C4H5NO2.

Mannarsamy, Maruthupandi;Prabusankar, Ganesan research published 《 Highly Active Copper(I)-Chalcogenone Catalyzed Knoevenagel Condensation Reaction Using Various Aldehydes and Active Methylene Compounds》, the research content is summarized as follows. First copper(I) chalcogenones catalyzed Knoevenagel Condensation reactions were reported. No illustration of the utilization of this copper-chalcogenone complex class in Knoevenagel Condensation catalysis can be found. Thus, copper(I) bis(benzimidazole-2-chalcogenone) catalysts [Cu(L1)4]+BF4 and [Cu(L2)4]+BF4 (L1 = bis(1-isopropyl-benzimidazole-2-selone)-3-ethyl; L2 = bis(1-isopropyl-benzimidazole-2-thione)-3-ethyl) were utilized as catalysts in the Knoevenagel Condensation reactions. These copper(I) chalcogenone catalysts have shown high efficiency for the catalytic Knoevenagel Condensation of aryl aldehydes and active methylene compounds In particular, [Cu(L2)4]+BF4, exhibited the best catalytic activities. The scope of the catalytic reactions was investigated with 22 different mols. The excellent catalytic activity was depicted for various types of substrates with either electron-rich or deficient aryl aldehydes. The present investigation features relatively mild reaction conditions with good functional group tolerance and excellent yields.

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., COA of Formula: C4H5NO2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Manel, Augustin team published research in Organic Chemistry Frontiers in 2021 | 105-34-0

Reference of 105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Reference of 105-34-0.

Manel, Augustin;Berreur, Jordan;Leroux, Frederic R.;Panossian, Armen research published 《 Electrophilic fluorosulfoxonium cations as hidden Bronsted acid catalysts in (n + 2) annulations of strained cycloalkanes》, the research content is summarized as follows. The highly electrophilic fluorosulfoxonium cation [Ph2S(O)F]+[B(C6F5)4]- was shown to promote (n + 2) annulation on donor-acceptor (D-A) strained cycles. This study highlights new reactions catalyzed by highly electrophilic sulfoxonium cations and the thin barrier between Lewis acid catalysis and Bronsted acid catalysis.

Reference of 105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Mane, Kishor D. team published research in European Journal of Organic Chemistry in 2022 | 20099-89-2

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Reference of 20099-89-2

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Reference of 20099-89-2.

Mane, Kishor D.;Rupanawar, Bapurao D.;Suryavanshi, Gurunath research published 《 Visible Light-Promoted, Photocatalyst-Free C(sp2)-H Bond Functionalization of Indolizines via EDA Complexes》, the research content is summarized as follows. The catalyst and additive-free, photo-driven cross dehydrogenative coupling (CDC) reaction initiated by electron donor-acceptor (EDA) complexes between electron rich indolizines and electron poor quinones had been demonstrated to obtain indolizine coupled quinones I [R = H, Cl; R1 = H, 1-Me, 7-Me, 8-Me; R2 = Ph, 4-MeC6H4, 3-BrC6H4, etc.; R3 = H, Br, NO2]. This green transformation revealed the advantages of operational simplicity, mild reaction conditions and good functional group tolerances.

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Reference of 20099-89-2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Malyasova, A. S. team published research in Russian Chemical Bulletin in 2021 | 31643-49-9

Related Products of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Related Products of 31643-49-9.

Malyasova, A. S.;Kostrova, E. A.;Abramov, I. G.;Maizlish, V. E.;Koifman, O. I. research published 《 Synthesis, acid-base interactions, and photostability of copper(II) tetrakis(3,5-di-tert-butylbenzoyloxy)phthalocyanine》, the research content is summarized as follows. 3,4-Dicyanophenyl 3,5-di-tert-butylbenzoate was synthesized for the 1st time. Copper tetrakis(3,5-di-tert-butylbenzoyloxy)phthalocyaninate was also obtained for the 1st time using template cyclotetramerization. Compounds were identified by UV-visible, IR, 1H and 13C NMR spectroscopies. The features of the acid-base interaction and the acidity constants of the copper tetrakis(3,5-di-tert-butylbenzoyloxy)phthalocyaninate protonated forms, as well as Cu tetra(4-tert-butyl)phthalocyaninate and its ligand in the system CH2Cl2-100% HO2CCF3 were studied. The macrocycle’s protonation includes two reversible stepwise reactions, namely, mono- and diprotonation at the meso N atoms. The acidity constants dependence on the chem. structure of mols. was revealed. The phthalocyanines photocatalytic stability in benzene was also studied. An increase in the electron-donating properties of the macrocycle decreases the complex stability, and vise versa, a decrease of the electron d. in the macrocycle increases the photostability.

Related Products of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts