Luo, Han team published research in Synthesis in | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Application In Synthesis of 105-34-0

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Application In Synthesis of 105-34-0.

Luo, Han;Lu, Qixing;Xu, Mingchuan;Gu, Mingxi;Li, Baosheng research published 《 Facile Access to α-Substituted β-Thio Enals from 1,2,3-Triazines and Thiols》, the research content is summarized as follows. Herein, a chemoselective cascade addition reaction was reported, which starts from 1,2,3-triazines and thiols to access several different α-substituted β thio enals and their derivatives C(O)C(R1)=CHSR2 [R1 = H, Me, Br, SC6H4, etc.; R2 = CO2Me, Ph, Bn, etc.] in a green and efficient synthesis. In terms of applications, readily available substrates, diversity of products, and mild reaction system made this strategy highly attractive.

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Application In Synthesis of 105-34-0

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Luo, Han team published research in Journal of Organic Chemistry in | 105-34-0

Recommanded Product: Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Recommanded Product: Methyl 2-cyanoacetate.

Luo, Han;Li, Yumeng;Zhang, Yuan;Lu, Qixing;An, Qiaoyu;Xu, Mingchuan;Li, Shanshan;Li, Jun;Li, Baosheng research published 《 Nucleophilic Aromatic Substitution of 5-Bromo-1,2,3-triazines with Phenols》, the research content is summarized as follows. Herein, a concerted nucleophilic aromatic substitution (SNAr) reaction of 5-bromo-1,2,3-triazines, I, was developed, in which the nonclassic mechanism of this reaction could be revealed by calculation Furthermore, the resulting 5-aryloxy-1,2,3-triazines II (R = H, Me) with phenols R1OH (R1 = Ph, naphthalen-1-yl, benzo[d][1,3]dioxol-5-yl, indol-5-yl, etc.) could be used as convenient precursors to access biol. important 3-aryloxy-pyridines III [Ar = Ph, pyridin-3-yl; R2 = Me, Ph, pyridin-2-yl; R3 = C(O)Me, COOMe, CN] in one-pot manner.

Recommanded Product: Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Luo, Da-Yun team published research in Tetrahedron in 2021 | 1835-49-0

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , Name: Tetrafluoroterephthalonitrile

Nitriles are found in many useful compounds. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons. 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Nitriles are found in many useful compounds. One of the most common occurrences of nitriles is in Nitrile rubber. Name: Tetrafluoroterephthalonitrile.

Luo, Da-Yun;Hu, Xing-Mei;Huang, Rong;Cui, Shi-Sheng;Yan, Sheng-Jiao research published 《 Base-promoted relay reaction of heterocyclic ketene aminals with o-difluorobenzene derivatives for the highly site-selective synthesis of functionalized indoles》, the research content is summarized as follows. A novel method was developed for the construction of highly functionalized indole derivatives, including fluorinated indoles I (R = H, F, CN, NO2; R1 = H, F, NO2, CN; R2 = H, F, methoxycarbonyl; R3 = H, F CN; R4 = NO2, benzoyl, (4-chlorophenyl)carbonyl, (thiophen-2-yl)carbonyl, etc.; Z = CH, N), via a site-selective, one-pot, two-step nucleophilic aromatic substitution reaction of o-difluorobenzene derivatives II with heterocyclic ketene aminals (HKAs) III promoted by two different bases (K2CO3 and Cs2CO3). A diverse library of indoles I was generated in good to excellent yields using a conventional base-mediated approach rather than metal catalysts. As a result, the highly functionalized indoles I were easily obtained in an environmentally friendly, rapid, and practical manner, and the products have potential biol. activity.

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , Name: Tetrafluoroterephthalonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Lopes, Diogo team published research in Synlett in 2020 | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Application In Synthesis of 105-34-0

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Application In Synthesis of 105-34-0.

Lopes, Diogo;Costa, Marta;Loucano, Joao;Proenca, Fernanda research published 《 A Convenient One-pot Synthesis of Chromenyl Acrylates and Acrylonitriles》, the research content is summarized as follows. 2H-Oxo-chromenyl acrylates I (R1 = H, OH, OMe; R2 = H, Me, Br; R3 = Me, Et) and 2H-imino-chromenyl acrylonitriles II (R1 = H, Me, OMe; R2 = H; R3 = H, Me, OH, OMe, Cl, Br) have been prepared from a salicylaldehyde and Et cyanoacetate or 2-amino-1,1,3-tricyanopropene, resp. The reaction occurs in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) and the products were isolated in good to quant. yields. Despite the simplicity of the synthesis, this is the first time that these substituted chromenes have been isolated.

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Application In Synthesis of 105-34-0

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Lokolkar, Manjunath S. team published research in European Journal of Organic Chemistry in 2022 | 3032-92-6

Recommanded Product: 4-Ethynylbenzonitrile, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.3032-92-6, formula is C9H5N, Name is 4-Ethynylbenzonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Recommanded Product: 4-Ethynylbenzonitrile.

Lokolkar, Manjunath S.;Mane, Pravin A.;Dey, Sandip;Bhanage, Bhalchandra M. research published 《 Synthesis of 2-Substituted Indoles by Pd-Catalyzed Reductive Cyclization of 1-Halo-2-nitrobenzene with Alkynes》, the research content is summarized as follows. An effective process for synthesizing 2-substituted indoles in a one-pot tandem reaction of 1-halo-2-nitrobenzene and terminal alkynes through addition/reductive cyclization is presented. This protocol involves a Sonogashira-type coupling reaction followed by reductive cyclization employing dppf (1,1′-bis(diphenylphosphino)ferrocene) ligated Pd dithiolate complex as a catalyst and Zn as an inexpensive reductant. This efficient and tandem process tolerates broad functional groups with moderate to good yields. The gram-scale synthesis of 2-substituted indole has also been demonstrated. This protocol provides an alternative route for the synthesis of 2-substituted indoles.

Recommanded Product: 4-Ethynylbenzonitrile, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Liu, Yu-Wen team published research in Journal of Organic Chemistry in 2022 | 3032-92-6

Name: 4-Ethynylbenzonitrile, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Nitrile is any organic compound with a −C≡N functional group. 3032-92-6, formula is C9H5N, Name is 4-Ethynylbenzonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. Name: 4-Ethynylbenzonitrile.

Liu, Yu-Wen;Li, Ling-Jun;Xu, Hui;Dai, Hui-Xiong research published 《 Palladium-Catalyzed Alkynylation of Enones with Alkynylsilanes via C-C Bond Activation》, the research content is summarized as follows. The synthesis of 1,3-enynes via palladium-catalyzed cross coupling between enone derivatives and alkynylsilanes was reported. The employment of appropriate pyridine-oxazoline ligand is the key to the C-C cleavage and the high E/Z stereoselectivity. This protocol features broad substrate scope and wide functional-group tolerance, affording the desired products in moderate-to-good yields. Late-stage diversification of natural product β-ionone further demonstrated the synthetic utility of this protocol.

Name: 4-Ethynylbenzonitrile, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Liu, Yanyao team published research in Angewandte Chemie, International Edition in 2022 | 3032-92-6

Name: 4-Ethynylbenzonitrile, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 3032-92-6, formula is C9H5N, Name is 4-Ethynylbenzonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Name: 4-Ethynylbenzonitrile.

Liu, Yanyao;Ni, Dongshun;Stevenson, Bernard G.;Tripathy, Vikrant;Braley, Sarah E.;Raghavachari, Krishnan;Swierk, John R.;Brown, M. Kevin research published 《 Photosensitized [2+2]-Cycloadditions of Alkenylboronates and Alkenes》, the research content is summarized as follows. A new strategy for the synthesis of highly versatile cyclobutylboronates via the photosensitized [2+2]-cycloaddition of alkenylboronates and alkenes is presented. The process is mechanistically different from other processes in that energy transfer occurs with the alkenylboronate as opposed to the other alkene. This strategy allows for the synthesis of an array of diverse cyclobutylboronates. The conversion of these adducts to other compounds as well as their utility in the synthesis of melicodenine C is demonstrated.

Name: 4-Ethynylbenzonitrile, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., 3032-92-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Liu, Xiaoguang team published research in Journal of Medicinal Chemistry in 2021 | 105-34-0

SDS of cas: 105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. SDS of cas: 105-34-0.

Liu, Xiaoguang;Flores, Aimee A.;Situ, Lisa;Gu, Wen;Ding, Hui;Christofk, Heather R.;Lowry, William E.;Jung, Michael E. research published 《 Development of Novel Mitochondrial Pyruvate Carrier Inhibitors to Treat Hair Loss》, the research content is summarized as follows. Herein, we report the synthesis and evaluation of novel analogs of UK-5099 both in vitro and in vivo for the development of mitochondrial pyruvate carrier (MPC) inhibitors to treat hair loss. A comprehensive understanding of the structure-activity relationship was obtained by varying four positions of the hit compound, namely, the alkyl group on the N1 position, substituents on the indole core, various aromatic and heteroaromatic core structures, and various Michael acceptors. The major discovery was that the inhibitors with a 3,5-bis(trifluoromethyl)benzyl group at the N1 position were shown to have much better activity than JXL001 (UK-5099) to increase cellular lactate production Addnl., analog JXL069, possessing a 7-azaindole heterocycle, was also shown to have significant MPC inhibition activity, which further increases the chem. space for drug design. Finally, more than 10 analogs were tested on shaved mice by topical treatment and promoted obvious hair growth on mice.

SDS of cas: 105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Liu, Xiang team published research in Organic & Biomolecular Chemistry in | 20099-89-2

Application In Synthesis of 20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Nitriles are found in many useful compounds. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Nitriles are found in many useful compounds. One of the most common occurrences of nitriles is in Nitrile rubber. Application In Synthesis of 20099-89-2.

Liu, Xiang;Song, Dan;Zhang, Zemin;Lin, Jiatong;Zhuang, Canzhan;Zhan, Haiying;Cao, Hua research published 《 Regioselective C-H dithiocarbamation of indolizines with tetraalkylthiuram disulfide under metal-free conditions》, the research content is summarized as follows. An efficient and straightforward metal-free regioselective C-H dithiocarbamation of indolizines with tetraalkylthiuram disulfide has been described. A series of indolizine-dithiocarbamate derivatives, e.g., I (R1 = H, 8-Br, 6-Et, 7-MeO, etc., R2 = Ph, 3,4-Cl2C6H3, 2-furyl, etc.), were easily accessed in moderate to good yields with a broad scope. In addition, imidazo[1,2-a]pyridines II (R1 = H, 7-Me, R2 = Ph, 3-FC6H4, 3-MeOC6H4) were also well tolerated to afford diverse imidazoheterocycle-dithiocarbamate products, which are expected to be utilized for drug discovery. Of note, the reaction could be readily scaled up, and shows its practical value in organic synthesis.

Application In Synthesis of 20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Liu, Siqi team published research in Journal of Organometallic Chemistry in 2022 | 3032-92-6

3032-92-6, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., Computed Properties of 3032-92-6

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 3032-92-6, formula is C9H5N, Name is 4-Ethynylbenzonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Computed Properties of 3032-92-6.

Liu, Siqi;Li, Jianying;Hu, Wenli;Huang, Bin;Cai, Mingzhong research published 《 Recyclable gold(I)-catalyzed hydrohydrazidation of terminal alkynes towards keto-N-acylhydrazones》, the research content is summarized as follows. A facile and highly efficient heterogeneous gold(I)-catalyzed hydrohydrazidation of terminal alkynes with diverse hydrazides was developed in chlorobenzene at 60° by using an MCM-41-immobilized diphenylphosphine gold(I) complex [Ph2P-MCM-41-AuNTf2] as the catalyst, providing a novel and practical method for the synthesis of a wide variety of substituted keto-N-acylhydrazones in good to excellent yields. This heterogenized gold(I) catalyst was also easy to recover via filtration of the reaction mixture and was recyclable up to eight times without any apparent loss of catalytic efficiency.

3032-92-6, 4-Ethynylbenzonitrile is a simple benzyl alkyne compound potentially useful as a synthetic fragment and as a test compound for cross-coupling protocols. 4-Ethynylbenzonitrile has been described as a model compound for studying hydrogen bond formation in multifunctional molecules, as it contains four hydrogen bonding sites of which three are π-acceptors.

4-Ethynylbenzonitrile is a useful research compound. Its molecular formula is C9H5N and its molecular weight is 127.14 g/mol. The purity is usually 95%., Computed Properties of 3032-92-6

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts