Zhu, Daoyun published the artcileStudy of Direct Synthesis of DMC from CO2 and Methanol on CeO2: Theoretical Calculation and Experiment, SDS of cas: 100-70-9, the main research area is dimethyl carbonate synthesis carbon dioxide methanol ceria theor calculation.
Rare earth metal oxides are known to have good catalytic effectiveness in the direct synthesis of di-Me carbonate (DMC) from CO2 and methanol. In this work, we screened ceria (CeO2) catalysts by analyzing their capacity for CO2 adsorption. The effects of the crystal surface morphol. and oxygen vacancy on the catalytic performance of the ceria catalyst were studied by using d. functional theory (DFT). The results show that the (110) surface and higher oxygen vacancy content can better promote the synthesis of DMC and that the rod-shaped CeO2 catalyst has a better catalytic effect. The oxygen vacancy content on the catalyst was improved by freeze-drying and confirmed by thermogravimetric anal., Raman spectroscopy, and ESR. The freeze-dried CeO2 (CeO2-FD) then showed a higher catalytic performance. The conversion rate of methanol and the yield of DMC were 33.95% and 584 mmol g-1cat, resp., under mild conditions (140°C and 1 MPa).
Industrial & Engineering Chemistry Research published new progress about Adsorption energy. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, SDS of cas: 100-70-9.
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts