Lavoie, Christopher M. et al. published their research in Nature Communications in 2016 | CAS: 60710-80-7

3-Amino-4-methylbenzonitrile (cas: 60710-80-7) belongs to nitriles. There has been no report on the microbial biosynthesis of nitriles and the physiological function of such enzymes, nor was it not even known whether aliphatic and aromatic nitriles are biological compounds or just petrochemicals. Nitrile groups in organic compounds can undergo a variety of reactions depending on the reactants or conditions. A nitrile group can be hydrolyzed, reduced, or ejected from a molecule as a cyanide ion.HPLC of Formula: 60710-80-7

Challenging nickel-catalysed amine arylations enabled by tailored ancillary ligand design was written by Lavoie, Christopher M.;MacQueen, Preston M.;Rotta-Loria, Nicolas L.;Sawatzky, Ryan S.;Borzenko, Andrey;Chisholm, Alicia J.;Hargreaves, Breanna K. V.;McDonald, Robert;Ferguson, Michael J.;Stradiotto, Mark. And the article was included in Nature Communications in 2016.HPLC of Formula: 60710-80-7 This article mentions the following:

An operationally simple and air-stable ligand/nickel(II) pre-catalyst that accommodated the broadest combination of C(sp2)-N coupling partners reported to date for any single nickel catalyst, without the need for a precious-metal co-catalyst was reported. Key to the unprecedented performance of this pre-catalyst was the application of the new, sterically demanding yet electron-poor bisphosphine PAd-DalPhos. Featured were the first reports of nickel-catalyzed room temperature reactions involving challenging primary alkylamine and ammonia reaction partners employing an unprecedented scope of electrophiles, including transformations involving sought-after (hetero)aryl mesylates for which no capable catalyst system was known. In the experiment, the researchers used many compounds, for example, 3-Amino-4-methylbenzonitrile (cas: 60710-80-7HPLC of Formula: 60710-80-7).

3-Amino-4-methylbenzonitrile (cas: 60710-80-7) belongs to nitriles. There has been no report on the microbial biosynthesis of nitriles and the physiological function of such enzymes, nor was it not even known whether aliphatic and aromatic nitriles are biological compounds or just petrochemicals. Nitrile groups in organic compounds can undergo a variety of reactions depending on the reactants or conditions. A nitrile group can be hydrolyzed, reduced, or ejected from a molecule as a cyanide ion.HPLC of Formula: 60710-80-7

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts