Popov, Kirill K. et al. published their research in Journal of Organic Chemistry in 2022 | CAS: 10282-32-3

4-(Benzylamino)benzonitrile (cas: 10282-32-3) belongs to nitriles. Trimerization of aromatic nitriles requires harsh reaction conditions, high temperatures, long reaction times, and pressure. Nitriles are susceptible to hydrogenation over diverse metal catalysts. The reaction can afford either the primary amine (RCH2NH2) or the tertiary amine ((RCH2)3N), depending on conditions.Related Products of 10282-32-3

Reductive Amination Revisited: Reduction of Aldimines with Trichlorosilane Catalyzed by Dimethylformamide – Functional Groups Tolerance, Scope, and Limitations was written by Popov, Kirill K.;Campbell, Joanna L. P.;Kysilka, Ondrej;Hosek, Jan;Davies, Christopher D.;Pour, Milan;Kocovsky, Pavel. And the article was included in Journal of Organic Chemistry in 2022.Related Products of 10282-32-3 This article mentions the following:

Aldimines R1CH2NHR2 (R1 = but-3-yn-1-yl, Ph, thiophen-2-yl, etc.; R2 = Bu, Bn, cyclohexyl, 5-methyl-1,3,4-thiadiazol-2-yl, etc.), generated in situ from aliphatic, aromatic, and heteroaromatic aldehydes R1CHO and aliphatic, aromatic, and heteroaromatic primary or secondary amines R2NH2, can be reduced with trichlorosilane in the presence of DMF (DMF) as an organocatalyst (≤10 mol%) in toluene or CH2Cl2 at room temperature The reduction tolerates ketone carbonyls, esters, amides, nitriles, sulfones, sulfonamides, NO2, SF5, and CF3 groups, boronic esters, azides, phosphine oxides, C=C and CC bonds, and ferrocenyl nucleus but sulfoxides and N-oxides are reduced. α,β-Unsaturated aldimines undergo 1,2-reduction only, leaving the C=C bond intact. N-Monoalkylation of primary amines is attained with a 1:1 aldehyde to amine ratio, whereas excess of the aldehyde (≥2:1) allows second alkylation, giving rise to tertiary amines. Reductive N-alkylation of α-amino acids proceeds without racemization; the resulting products, containing a CC bond or N3 group, are suitable for click chem. This reaction thus offers advantages over the traditional methods (borohydride reduction or catalytic hydrogenation) in terms of efficiency and chemoselectivity. Solubility of some of the reacting partners appears to be the only limitation. The byproducts generated by the workup with aqueous NaHCO3 (i.e., NaCl and silica) are environmentally benign. As a greener alternative, DMA can be employed as a catalyst instead of DMF. In the experiment, the researchers used many compounds, for example, 4-(Benzylamino)benzonitrile (cas: 10282-32-3Related Products of 10282-32-3).

4-(Benzylamino)benzonitrile (cas: 10282-32-3) belongs to nitriles. Trimerization of aromatic nitriles requires harsh reaction conditions, high temperatures, long reaction times, and pressure. Nitriles are susceptible to hydrogenation over diverse metal catalysts. The reaction can afford either the primary amine (RCH2NH2) or the tertiary amine ((RCH2)3N), depending on conditions.Related Products of 10282-32-3

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts