Reductive cyanation of organic chlorides using CO2 and NH3 via Triphos-Ni(I) species was written by Dong, Yanan;Yang, Peiju;Zhao, Shizhen;Li, Yuehui. And the article was included in Nature Communications in 2020.Quality Control of 2-Amino-4-(trifluoromethyl)benzonitrile This article mentions the following:
The reductive cyanation of organic chlorides RCl (R = C6H5, naphthalen-1-yl, cyclohexyl, etc.) using CO2/NH3 as the electrophilic CN source has been described. The use of tridentate phosphine ligand Triphos allows for the nickel-catalyzed cyanation of a broad array of aryl and aliphatic chlorides to produce the desired nitrile products RCN in good yields, and with excellent functional group tolerance. Cheap and bench-stable urea was also shown as suitable CN source, suggesting promising application potential. Mechanistic studies imply that Triphos-Ni(I) species are responsible for the reductive C-C coupling approach involving isocyanate intermediates. This method expands the application potential of reductive cyanation in the synthesis of functionalized nitrile compounds under cyanide-free conditions, which is valuable for safe synthesis of (isotope-labeled) drugs. In the experiment, the researchers used many compounds, for example, 2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1Quality Control of 2-Amino-4-(trifluoromethyl)benzonitrile).
2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Quality Control of 2-Amino-4-(trifluoromethyl)benzonitrile
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts