Platinum Assisted Tandem P-C Bond Cleavage and P-N Bond Formation in Amide Functionalized Bisphosphine o-Ph2PC6H4C(O)N(H)C6H4PPh2-o: Synthesis, Mechanistic, and Catalytic Studies was written by Kunchur, Harish S.;Balakrishna, Maravanji S.. And the article was included in Inorganic Chemistry in 2022.Computed Properties of C14H12N2 This article mentions the following:
The reactions of amide functionalized bisphosphine o-Ph2PC6H4C(O)N(H)C6H4PPh2-o (1) with Pt salts is described. Treatment of 1 with [Pt(COD)Cl2] yielded a chelate complex, [PtCl2{o-Ph2PC6H4C(O)N(H)C6H4PPh2-o}κ2-P,P] (2), which on subsequent treatment with LiHMDS formed a novel 1,2-azaphospholene-phosphine complex [PtPhCl{o-C6H4{C(O)N(o-PPh2(C6H4))P(Ph)}}κ2-P,P] (3) involving a tandem P–C bond cleavage and P-N bond formation. The same complex 3 on passing dry HCl gas afforded dichloro-complex [PtCl2{o-C6H4{C(O)N(o-PPh2(C6H4))P(Ph)}}κ2-P,P] (5). Complex 2 upon refluxing in toluene or treatment of 1 with [Pt(COD)Cl2] in the presence of a base at room temperature resulted in pincer complex [PtCl{o-Ph2PC6H4C(O)N(C6H4PPh2-o)}κ3-P,N,P] (4). Reaction of 1 with [Pt(COD)ClMe] at room temperature also afforded the pincer complex [PtMe{o-Ph2PC6H4C(O)N(C6H4PPh2-o)}κ3-P,N,P] (6). Mechanistic studies on 1,2-azaphospholene formation showed the reductive elimination of LiCl to form a phosphonium salt that readily adds one of the P-C bonds oxidatively to the in situ generated Pt0 species to form a chelate complex 3. Analogous Pd complex [PdCl2{o-C6H4{C(O)N(o-PPh2(C6H4))P(Ph)}}κ2-P,P] (7) showed excellent catalytic activity toward N-alkylation of amines with alcs. with a very low catalyst loading (0.05 mol %), and the methodol. is very efficient toward the gram scale synthesis of many N-alkylated amines. In the experiment, the researchers used many compounds, for example, 4-(Benzylamino)benzonitrile (cas: 10282-32-3Computed Properties of C14H12N2).
4-(Benzylamino)benzonitrile (cas: 10282-32-3) belongs to nitriles. Nitrile compounds can be prepared by the incorporation of a cyanide source through C–C bond formation or by dehydration of primary carboxamides. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Computed Properties of C14H12N2
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts