Wada, Emiko et al. published their research in Catalysis Science & Technology in 2017 | CAS: 4435-14-7

2-Cyclohexylacetonitrile (cas: 4435-14-7) belongs to nitriles. The R-C-N bond angle in and nitrile is 180鎺?which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two 锜? bond in the triple bond. Alkyl nitriles are sufficiently acidic to undergo deprotonation of the C-H bond adjacent to the CN group.Strong bases are required, such as lithium diisopropylamide and butyl lithium. The product is referred to as a nitrile anion. Recommanded Product: 4435-14-7

Direct cyanomethylation of aliphatic and aromatic hydrocarbons with acetonitrile over a metal loaded titanium oxide photocatalyst was written by Wada, Emiko;Takeuchi, Tomoaki;Fujimura, Yuki;Tyagi, Akanksha;Kato, Tatsuhisa;Yoshida, Hisao. And the article was included in Catalysis Science & Technology in 2017.Recommanded Product: 4435-14-7 This article mentions the following:

A platinum-loaded TiO2 (Pt/TiO2) photocatalyst promoted cyanomethylation of aliphatic hydrocarbons, namely cyclohexane and cyclohexene, with acetonitrile, where the photogenerated hole oxidatively dissociates the C-H bond of both the acetonitrile and the aliphatic hydrocarbons to form each corresponding radical species before their radical cross-coupling. The Pt/TiO2 photocatalyst was more active than the Pd/TiO2 photocatalyst in these reactions. In contrast, the cyanomethylation of benzene was promoted by the Pd/TiO2 photocatalyst or a phys. mixture of the Pt/TiO2 photocatalyst and a Pd catalyst supported by Al2O3, while it was hardly promoted by the Pt/TiO2 photocatalyst alone. The temperature dependence of the reaction rate proved that the Pd nanoparticles on the TiO2 thermally function as a metal catalyst. However, in the cyanomethylation of aliphatic hydrocarbons, the catalytic effect of the metal particles was not observed, meaning that the radical coupling takes place without the metal catalysis. Thus, it is concluded that in the case of the benzene cyanomethylation the Pd nanoparticles play dual roles, as a catalyst to catalyze the substitution reaction of benzene with the cyanomethyl radical, and as an electron receiver to reduce the recombination of the photoexcited electrons and holes in the TiO2 photocatalyst, although they could not contribute as a catalyst to the cyanomethylation of aliphatic hydrocarbons. In the experiment, the researchers used many compounds, for example, 2-Cyclohexylacetonitrile (cas: 4435-14-7Recommanded Product: 4435-14-7).

2-Cyclohexylacetonitrile (cas: 4435-14-7) belongs to nitriles. The R-C-N bond angle in and nitrile is 180鎺?which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two 锜? bond in the triple bond. Alkyl nitriles are sufficiently acidic to undergo deprotonation of the C-H bond adjacent to the CN group.Strong bases are required, such as lithium diisopropylamide and butyl lithium. The product is referred to as a nitrile anion. Recommanded Product: 4435-14-7

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Fisher, T. H. et al. published their research in Journal of Organic Chemistry in 1978 | CAS: 64113-86-6

5-Methyl-2-nitrobenzonitrile (cas: 64113-86-6) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).SDS of cas: 64113-86-6

Substituent effects in free-radical reactions. A study of 4-substituted 3-cyanobenzyl free radicals was written by Fisher, T. H.;Meierhoefer, A. W.. And the article was included in Journal of Organic Chemistry in 1978.SDS of cas: 64113-86-6 This article mentions the following:

An extended Hammett treatment of the kinetics of N-bromosuccinimide bromination of I (R = H, halo, Me, Ph, MeO, NO2, PhN:N, CN, MeCO) led to a free radical substituent constant (σ•). The substituent order of free-radical stabilization was F < MeO < Me < H < Cl < Ph < I < Br < NO2 < PhN:N < CN < MeCO. F and MeO destabilized the radical. In the experiment, the researchers used many compounds, for example, 5-Methyl-2-nitrobenzonitrile (cas: 64113-86-6SDS of cas: 64113-86-6).

5-Methyl-2-nitrobenzonitrile (cas: 64113-86-6) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).SDS of cas: 64113-86-6

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Itou, Tatsuya et al. published their research in Tetrahedron in 2009 | CAS: 154532-34-0

3-(tert-Butyl)benzonitrile (cas: 154532-34-0) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. Nitriles are susceptible to hydrogenation over diverse metal catalysts. The reaction can afford either the primary amine (RCH2NH2) or the tertiary amine ((RCH2)3N), depending on conditions.Category: nitriles-buliding-blocks

Decarboxylative photosubstitution of dicyanobenzenes with aliphatic carboxylate ions was written by Itou, Tatsuya;Yoshimi, Yasuharu;Morita, Toshio;Tokunaga, Yuji;Hatanaka, Minoru. And the article was included in Tetrahedron in 2009.Category: nitriles-buliding-blocks This article mentions the following:

The photoreaction of dicyanobenzenes with aliphatic carboxylate ions afforded alkylcyanobenzenes and alkyldicyanobenzenes via decarboxylative substitution. The redox-photosensitized reaction system was effective in improving the product yield. The efficiency of this photoreaction depended on the structure of the carboxylate ion, and the product distribution varied with the dicyanobenzenes employed. This photoreaction was proved to be a clean process for the preparation of alkylcyanobenzenes. In the experiment, the researchers used many compounds, for example, 3-(tert-Butyl)benzonitrile (cas: 154532-34-0Category: nitriles-buliding-blocks).

3-(tert-Butyl)benzonitrile (cas: 154532-34-0) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. Nitriles are susceptible to hydrogenation over diverse metal catalysts. The reaction can afford either the primary amine (RCH2NH2) or the tertiary amine ((RCH2)3N), depending on conditions.Category: nitriles-buliding-blocks

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhang, Chenhuan et al. published their research in Organic Letters in 2020 | CAS: 1483-54-1

2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Alkyl nitriles are sufficiently acidic to undergo deprotonation of the C-H bond adjacent to the CN group.Strong bases are required, such as lithium diisopropylamide and butyl lithium. The product is referred to as a nitrile anion. Recommanded Product: 2-Amino-4-(trifluoromethyl)benzonitrile

Pd/Cu-Catalyzed Domino Cyclization/Deborylation of Alkene-Tethered Carbamoyl Chloride and 1,1-Diborylmethane was written by Zhang, Chenhuan;Wu, Xianqing;Wang, Chenchen;Zhang, Chengxi;Qu, Jingping;Chen, Yifeng. And the article was included in Organic Letters in 2020.Recommanded Product: 2-Amino-4-(trifluoromethyl)benzonitrile This article mentions the following:

Reported herein is a Pd/Cu cooperative-catalyzed dicarbofunctionalization of alkene-tethered carbamoyl chlorides with 1,1-diborylmethane. This cyclization/deborylation cascade strategy allows for the expedient formation of the versatile borylated 3,3-disubstituted oxindole skeleton, allowing for further functionalization via the derivatization of the C-B bond. In the experiment, the researchers used many compounds, for example, 2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1Recommanded Product: 2-Amino-4-(trifluoromethyl)benzonitrile).

2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Alkyl nitriles are sufficiently acidic to undergo deprotonation of the C-H bond adjacent to the CN group.Strong bases are required, such as lithium diisopropylamide and butyl lithium. The product is referred to as a nitrile anion. Recommanded Product: 2-Amino-4-(trifluoromethyl)benzonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Shaabani, Ahmad et al. published their research in Monatshefte fuer Chemie in 2017 | CAS: 70291-62-2

2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (cas: 70291-62-2) belongs to nitriles. Nitrile function is a very important functional group because it can be manipulated to other functional groups such as carboxylic acid by hydrolysis or amine by reduction, respectively. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.SDS of cas: 70291-62-2

A green chemical approach: a straightforward one-pot synthesis of 2-aminothiophene derivatives via Gewald reaction in deep eutectic solvents was written by Shaabani, Ahmad;Hooshmand, Seyyed Emad;Afaridoun, Hadi. And the article was included in Monatshefte fuer Chemie in 2017.SDS of cas: 70291-62-2 This article mentions the following:

The synergic effect of choline chloride/urea as a deep eutectic solvent was investigated in the synthesis of 2-aminothiophene derivatives via a three-component cyclocondensation of a ketone or an aldehyde with activated nitriles and elemental sulfur catalyzed by NaOH as cheap and highly accessible base. The advantages of this catalytic protocol were eco-friendly, easy to set up, reusability and a simple separation and purification of products without using chromatog. in high yields at short times. In the experiment, the researchers used many compounds, for example, 2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (cas: 70291-62-2SDS of cas: 70291-62-2).

2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (cas: 70291-62-2) belongs to nitriles. Nitrile function is a very important functional group because it can be manipulated to other functional groups such as carboxylic acid by hydrolysis or amine by reduction, respectively. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.SDS of cas: 70291-62-2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Camarasa, Marta et al. published their research in Molecular Diversity in 2013 | CAS: 67197-53-9

2-(2,6-Dibromophenyl)acetonitrile (cas: 67197-53-9) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Nitrile groups in organic compounds can undergo a variety of reactions depending on the reactants or conditions. A nitrile group can be hydrolyzed, reduced, or ejected from a molecule as a cyanide ion.Quality Control of 2-(2,6-Dibromophenyl)acetonitrile

A new and practical method for the synthesis of 6-aryl-5,6-dihydropyrido[2,3-d]pyrimidine-4,7(3H,8H)-diones was written by Camarasa, Marta;Barnils, Christian;Puig de la Bellacasa, Raimon;Teixido, Jordi;Borrell, Jose I.. And the article was included in Molecular Diversity in 2013.Quality Control of 2-(2,6-Dibromophenyl)acetonitrile This article mentions the following:

A one step general synthetic method for the synthesis of 6-aryl-5,6-dihydropyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione derivatives was described. This methodol. is based on treating a 2-aryl-substituted acrylate with a 6-amino-4(3H)-pyrimidinone derivative in the presence of a base under microwave irradiation conditions. The resulting pyrido[2,3-d]pyrimidine derivatives present an aryl substituent at position C6, precisely the one directly related to the biol. activity of such heterocyclic compounds These protocols were extended to other 2-alkyl-substituted and 3-alkyl (or aryl)-substituted acrylate derivatives but with lower yields. The synthesis of the target compounds was achieved by a reaction of 2,6-diamino-4(3H)-pyrimidinone with α-(methylene)benzeneacetic acid Me ester derivatives (acrylate esters), α-methylene-1-naphthaleneacetic acid Me ester, 2-methyl-2-propenoic acid Me ester. 6-Amino-2-(methylthio)-4(3H)-pyrimidinone was also a suitable starting material. The title compounds thus formed included 2-amino-5,8-dihydro-6-(phenyl)pyrido[2,3-d]pyrimidine-4,7(3H,6H)-dione (I) and related substances. In the experiment, the researchers used many compounds, for example, 2-(2,6-Dibromophenyl)acetonitrile (cas: 67197-53-9Quality Control of 2-(2,6-Dibromophenyl)acetonitrile).

2-(2,6-Dibromophenyl)acetonitrile (cas: 67197-53-9) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Nitrile groups in organic compounds can undergo a variety of reactions depending on the reactants or conditions. A nitrile group can be hydrolyzed, reduced, or ejected from a molecule as a cyanide ion.Quality Control of 2-(2,6-Dibromophenyl)acetonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Perry, Matthew W. D. et al. published their research in Journal of Medicinal Chemistry in 2017 | CAS: 60025-09-4

4-Amino-6-chloropyrimidine-5-carbonitrile (cas: 60025-09-4) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Electric Literature of C5H3ClN4

Design and Synthesis of Soluble and Cell-Permeable PI3Kδ Inhibitors for Long-Acting Inhaled Administration was written by Perry, Matthew W. D.;Bjoerhall, Karin;Bonn, Britta;Carlsson, Johan;Chen, Yunhua;Eriksson, Anders;Fredlund, Linda;Hao, Hai’e;Holden, Neil S.;Karabelas, Kostas;Lindmark, Helena;Liu, Feifei;Pemberton, Nils;Petersen, Jens;Rodrigo Blomqvist, Sandra;Smith, Reed W.;Svensson, Tor;Terstiege, Ina;Tyrchan, Christian;Yang, Wenzhen;Zhao, Shuchun;Oester, Linda. And the article was included in Journal of Medicinal Chemistry in 2017.Electric Literature of C5H3ClN4 This article mentions the following:

PI3Kδ is a lipid kinase that is believed to be important in the migration and activation of cells of the immune system. Inhibition is hypothesized to provide a powerful yet selective immunomodulatory effect that may be beneficial for the treatment of conditions such as asthma or rheumatoid arthritis. In this work, identification of inhibitors based on a thiazolopyridone core structure and their subsequent optimization for inhalation is described. The initially identified compound I had good potency and isoform selectivity but was not suitable for inhalation. Addition of basic substituents to a region of the mol. pointing to solvent was tolerated (enzyme inhibition pIC50 > 9), and by careful manipulation of the pKa and lipophilicity, the authors were able to discover compounds II (R = Me or i-Bu) with good lung retention and cell potency that could be taken forward to in vivo studies where significant target engagement could be demonstrated. In the experiment, the researchers used many compounds, for example, 4-Amino-6-chloropyrimidine-5-carbonitrile (cas: 60025-09-4Electric Literature of C5H3ClN4).

4-Amino-6-chloropyrimidine-5-carbonitrile (cas: 60025-09-4) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Electric Literature of C5H3ClN4

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zheng, Haoteng et al. published their research in RSC Advances in 2022 | CAS: 55406-13-8

3-Methylthiophene-2-carbonitrile (cas: 55406-13-8) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. Both routes are green in the sense that they do not generate stoichiometric amounts of salts.Synthetic Route of C6H5NS

Programing a cyanide-free transformation of aldehydes to nitriles and one-pot synthesis of amides through tandem chemo-enzymatic cascades was written by Zheng, Haoteng;Xiao, Qinjie;Mao, Feiying;Wang, Anming;Li, Mu;Wang, Qiuyan;Zhang, Pengfei;Pei, Xiaolin. And the article was included in RSC Advances in 2022.Synthetic Route of C6H5NS This article mentions the following:

In this work, a greener chemo-enzymic cascade to synthesize alky and aryl nitriles RCN (R = Ph, Bn, pentyl, furan-2-yl, etc.) from readily accessible aldehydes RCHO, that were further transformed into corresponding amides RC(O)NH2 via an artificial enzyme cascade was reported. A biphasic reaction system was designed to bridge chem. synthesis and enzymic catalysis through simple phase separation The biphasic system mainly perfectly avoided the inactivation of hydroxylamine on aldoxime dehydratase from Pseudomonas putida (OxdF1) and nitrile hydratase from Aurantimonas manganoxydans ATCC BAA-1229 (NHase1229). For the synthesis of various nitriles, moderate isolation yields of approx. 60% were obtained by the chemo-enzymic cascade. Interestingly, two seemingly conflicting reactions of dehydration and hydration were sequentially proceeded to synthesize amides by the synergistic catalysis of OxdF1 and NHase1229 in E. coli cells. An isolation yield of approx. 62% was achieved for benzamide at the one-liter scale. In addition, the shuttle transport of substrates and products between two phases is convenient for the product separation and n-hexane recycling. Thus, the chemo-enzymic cascade shows a potential application in the cyanide-free and large-scale synthesis of nitriles and amides. In the experiment, the researchers used many compounds, for example, 3-Methylthiophene-2-carbonitrile (cas: 55406-13-8Synthetic Route of C6H5NS).

3-Methylthiophene-2-carbonitrile (cas: 55406-13-8) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. Both routes are green in the sense that they do not generate stoichiometric amounts of salts.Synthetic Route of C6H5NS

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Mao, Fei et al. published their research in RSC Advances in 2016 | CAS: 10282-32-3

4-(Benzylamino)benzonitrile (cas: 10282-32-3) belongs to nitriles. Nitrile compounds can be prepared by the incorporation of a cyanide source through C–C bond formation or by dehydration of primary carboxamides. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Reference of 10282-32-3

Heterogeneous cobalt catalysts for reductive amination with H2: general synthesis of secondary and tertiary amines was written by Mao, Fei;Sui, Dejun;Qi, Zhengliang;Fan, Haipeng;Chen, Rizhi;Huang, Jun. And the article was included in RSC Advances in 2016.Reference of 10282-32-3 This article mentions the following:

Heterogeneous Co@NC catalysts were prepared, characterized and applied for the reductive amination of aldehydes and ketones with H2 gas. The Co catalyst Co@NC (800-2 h) was found to be active and selective for the reductive amination of aldehydes and ketones using H2 gas. Thus, general synthesis of secondary and tertiary amines was developed by the Co-catalyzed reductive amination with H2 gas, and various secondary and tertiary amines was obtained in high yields. Moreover, a practical synthesis of N-substituted isoindolinones was also presented by a one step process with the Co@NC (800-2 h) catalyst. The Co@NC (800-2 h) catalyst was reusable at least five times without evident loss of activity. In the experiment, the researchers used many compounds, for example, 4-(Benzylamino)benzonitrile (cas: 10282-32-3Reference of 10282-32-3).

4-(Benzylamino)benzonitrile (cas: 10282-32-3) belongs to nitriles. Nitrile compounds can be prepared by the incorporation of a cyanide source through C–C bond formation or by dehydration of primary carboxamides. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Reference of 10282-32-3

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Han, Jing et al. published their research in Advanced Synthesis & Catalysis in 2013 | CAS: 1483-54-1

2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Product Details of 1483-54-1

Copper(I)-Catalyzed Coupling Cyclization of Methyl Perfluoroalk-2-ynoates with 2-Aminobenzonitriles: Synthesis of 2-Perfluoroalkylated Quinolines was written by Han, Jing;Cao, Long;Bian, Linglin;Chen, Jie;Deng, Hongmei;Shao, Min;Jin, Zhijun;Zhang, Hui;Cao, Weiguo. And the article was included in Advanced Synthesis & Catalysis in 2013.Product Details of 1483-54-1 This article mentions the following:

An efficient route to 2-perfluoroalkylated quinoline derivatives through the copper(I)-mediated coupling-cyclization of 2-aminobenzonitriles with Me perfluoroalk-2-ynoates is described. Moderate to excellent yields have been achieved under mild conditions. E.g., in presence of CuBr and piperidine in DMSO, coupling-cyclization of 2-H2NC6H4CN and CF3CCCO2Me gave 94% 2-perfluoroalkylated quinoline derivative (I). The reaction mechanism is also discussed. In the experiment, the researchers used many compounds, for example, 2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1Product Details of 1483-54-1).

2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Product Details of 1483-54-1

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts