Iron-Catalyzed Tandem Radical Addition/Cyclization: Highly Efficient Access to Methylated Quinoline-2,4-diones was written by Sun, Huan;Jiang, Yue;Lu, Ming-Kun;Li, Yun-Yun;Li, Li;Liu, Ji-Kai. And the article was included in Synlett in 2020.Product Details of 1483-54-1 This article mentions the following:
A visible-light-induced and iron-catalyzed oxidative radical addition/cyclization cascade reaction of N-(o-cyanoaryl)acrylamides I [R1 = 4-Cl, 5-CF3, 3-Br, etc.; R2 = Me, Bn; R3 = Me, [(2,2-dimethylpropanoyl)oxy]methyl, Bn, Ph, (acetyloxy)methyl, (1,3-dioxo-2,3-dihydro-1H-isoindol-2-yl)methyl] with DMSO has been developed. The method exhibits a wide substrate scope and an excellent functional-group tolerance, thus providing an efficient and convenient access to a variety of methylated quinoline-2,4-diones II (R4 = 6-Cl, 6-CF3, 5-Br, etc.). In the experiment, the researchers used many compounds, for example, 2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1Product Details of 1483-54-1).
2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1) belongs to nitriles. Trimerization of aromatic nitriles requires harsh reaction conditions, high temperatures, long reaction times, and pressure. Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. Both routes are green in the sense that they do not generate stoichiometric amounts of salts.Product Details of 1483-54-1
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts