Electric Literature of 2032-34-0,Some common heterocyclic compound, 2032-34-0, name is 3,3-Diethoxypropanenitrile, molecular formula is C7H13NO2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.
Preparation of cyanomalondialdehyde. To a dried flask was added sodium hydride (0.82 g, 50% suspended in mineral oil, 17 mmol). The sodium hydride was washed three times with 15 mL of ether, and then 15 mL of ether was added to the flask. After cooling the slurry to 0 C., ethyl formate (10.4 g, 140 mmol) was added. To this mixture was added 3,3-diethoxypropionitrile (2 g, 14 mmol) in 10 ml of ether over 2 hours (syringe pump). The mixture was stirred at room temperature for 20 hours, and then poured into 100 mL of ice water. This solution was extracted three times with ether, and then the ether extracts were discarded. The aqueous phase was acidified to pH 3 with concentrated HCl and extracted with dichloromethane. The organic phase was dried over MgSO4, filtered, and concentrated to yield 0.3 g of cyanomalondialdehyde as a yellow solid. Additional product was recovered from the pH 3 aqueous phase: the aqueous phase was concentrated to dryness, and then dissolved in 5 mL of methanol. The inorganic salt was removed by filtration, and the filtrate was concentrated to yield 1 g of cyanomalondialdehyde as a yellow solid. 1H NMR (300 MHz, DMSO-d6) delta8.94 (s, 2H), 4.95 (br s, 1H).
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 3,3-Diethoxypropanenitrile, its application will become more common.
Reference:
Patent; Bristol-Myers Squibb Company; US6420349; (2002); B1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts