Saska, Jan team published research in Journal of Materials Chemistry C: Materials for Optical and Electronic Devices in 2021 | 105-34-0

Quality Control of 105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Quality Control of 105-34-0.

Saska, Jan;Shevchenko, Nikolay E.;Gonel, Goktug;Bedolla-Valdez, Zaira I.;Talbot, Rachel M.;Moule, Adam J.;Mascal, Mark research published 《 Synthesis and characterization of solution processable, high electron affinity molecular dopants》, the research content is summarized as follows. p-Type mol. dopants are a class of high electron affinity (EA) mols. used to ionize organic electronic materials for device applications. It is extremely challenging to ionize high-performance, high-ionization energy (IE) polymers because the dopant mol. needs to be compatible with solution processing. Here, we describe the synthesis and characterization of two new solution processable mol. dopants with the highest EA values yet reported. These mols., based on the parent hexacyanotrimethylenecyclopropane (CN6-CP) structure, achieve solubility by the substitution of one or more of the cyano groups with esters, which both reduces the volatility relative to CN6-CP and allows for solution processing. The efficacy of these new mol. dopants, which have EA values up to 5.75 eV with respect to vacuum, was tested by performing sequential solution doping experiments with a series of thiophene and alternating diketopyrrolopyrrole polymers with IEs ranging from 5.10 eV to 5.63 eV. For completeness, the new dopant results are compared to a previously reported tri-ester substituted CN6-CP analog with an EA of 5.50 EV. The increased EA of these stronger dopants induces a 10-100 fold increase in film conductivity and saturation of the conductivity at 15-100 S cm-1 for almost all polymers tested. These new dopant structures enable controlled solution doping at high doping levels for most alternating co-polymers of interest to the organic electronics community.

Quality Control of 105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts