Luc, Nhu-Quynh’s team published research in Materials Science in Semiconductor Processing in 2020-07-31 | CAS: 91-15-6

Materials Science in Semiconductor Processing published new progress about Band gap. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, SDS of cas: 91-15-6.

Luc, Nhu-Quynh published the artcileDensity Function Theory calculation, and phthalonitrile process for a synthesis of single crystal zinc phthalocyanine, SDS of cas: 91-15-6, the main research area is single crystal zinc phthalocyanine phthalonitrile density function theory.

This study aims to synthesize the β-phase single crystal of zinc phthalocyanine (ZnPc) by using phthalonitrile process and vapor deposition. The single-crystal X-ray diffraction was used to identify the mol. structure and lattice parameters of the synthesized material. The mol. structure, frontier MOs, and IR spectroscopy of ZnPc were investigated through Time Dependent (TD)-D. Function Theory (DFT) calculations that is compared with exptl. results. For the solid-state simulation, the exptl. crystallog. data was used to determine band structure and d. of state using DFT method on Quantum Espresso. The β-phase monoclinic single crystal of ZnPc is as a direct band gap semiconductor with the calculated energy gap of 2.1 eV, and the Fermi energy level of 2.61 eV.

Materials Science in Semiconductor Processing published new progress about Band gap. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, SDS of cas: 91-15-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Manning, Trevor W.’s team published research in Chemical Research in Toxicology in 2020-02-17 | CAS: 1885-29-6

Chemical Research in Toxicology published new progress about Azo dyes. 1885-29-6 belongs to class nitriles-buliding-blocks, name is 2-Aminobenzonitrile(Flakes or Chunks), and the molecular formula is C7H6N2, Recommanded Product: 2-Aminobenzonitrile(Flakes or Chunks).

Manning, Trevor W. published the artcileStructure of an unusual tetracyclic deoxyguanosine adduct: Implications for frameshift mutagenicity of ortho-cyano nitroanilines, Recommanded Product: 2-Aminobenzonitrile(Flakes or Chunks), the main research area is structure tetracyclic deoxyguanosine adduct frameshift mutagenicity orthocyanonitroaniline.

Nitroarom. compounds represent a major class of industrial chems. that are also found in nature. Polycyclic derivatives are regarded as potent mutagens and carcinogens following bioactivation to produce nitrenium electrophiles that covalently modify DNA to afford N-linked C8-2′-deoxyguanosine (C8-dG) lesions that can induce frameshift mutations, especially in CpG repeat sequences. In contrast, their monocyclic counterparts typically exhibit weak mutagenicity or a lack thereof, despite also undergoing bioactivation to afford N-linked C8-dG adducts. Recently, it has been reported that cyano substitution can greatly increase the mutagenicity of nitroaniline derivatives that are components of azo dyes. The basis of this “”cyano effect”” may be rooted in the formation of a novel polycyclic adduct arising from initial formation of the N-linked C8-dG adduct followed by a cyclization process involving N7 of dG and the ortho-CN group of the attached C8-aryl moiety to generate a quinazolinimine ring as part of a fused tetracyclic C8,N7-dG adduct structure. The present work structurally characterizes this novel cyclic adduct using a combination of optical spectroscopies, NMR anal., d. functional theory (DFT) calculations, and mol. dynamics (MD) simulations. Our data indicate that this highly fluorescent cyclic adduct adopts the promutagenic syn conformation and can stabilize the slipped mutagenic intermediate (SMI) within the CpG repeat of the NarI sequence, which is a hotspot for frameshift mutagenesis mediated by polycyclic N-linked C8-dG adducts. In contrast, the open para-CN (4-aminobenzontrile-derived) N-linked C8-dG adduct is less likely to disrupt the canonical B-form. Together, our results provide a rationale for the potent mutagenicity of cyano-substituted nitroaniline derivatives recently reported in frameshift-sensitive tester strains.

Chemical Research in Toxicology published new progress about Azo dyes. 1885-29-6 belongs to class nitriles-buliding-blocks, name is 2-Aminobenzonitrile(Flakes or Chunks), and the molecular formula is C7H6N2, Recommanded Product: 2-Aminobenzonitrile(Flakes or Chunks).

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

V., Bhavadhaarani’s team published research in International Journal of Phytoremediation in 2021 | CAS: 5653-62-3

International Journal of Phytoremediation published new progress about Azo dyes. 5653-62-3 belongs to class nitriles-buliding-blocks, name is 2,3-Dimethoxybenzonitrile, and the molecular formula is C9H9NO2, Recommanded Product: 2,3-Dimethoxybenzonitrile.

V., Bhavadhaarani published the artcileCombined treatment of synthetic textile effluent using mixed azo dye by phyto and phycoremediation, Recommanded Product: 2,3-Dimethoxybenzonitrile, the main research area is azo dye textile effluent phytoremediation bioadsorptive wastewater treatment; Phycoremediation; phytoremediation; textile effluent.

Phytoremediation is one of the biol. approaches for remediating textile dyeing effluents. The objective of this study is the use of Pistia stratiotes, an aquatic macrophyte, which was found to degrade the maximum of 83% of mixed azo dye. A phytoreactor was designed and constructed to scale up the process of phytoremediation by P. stratiotes to treat 40mg/l of synthetic textile effluent. Continuous flow phytoreactor fed with 40mg/l (cycle 1) which showed maximum decolorization of 84%, COD removal was about 61%, BOD which was reduced up to 71.9%, and TDS removal was about 72% resp. Further to remove the residual color and toxic effects of the dyes, Phycoremediation was followed for the mixed azo dyes using the microalgae Chlorella vulgaris which showed a maximum decolorization of 99% in the batch study and 74% in the scale-up study where the treated effluent was at the most minimal discharge. Phytotoxicity tests showed 80% of germination in treated effluent, and the plants in untreated wastewater had inhibited growth that indicates only 30% of germination. Such combined biol. treatment techniques were put forward to be the most eco-friendly technol., which is cost-effective and attain zero discharge of the textile effluent.

International Journal of Phytoremediation published new progress about Azo dyes. 5653-62-3 belongs to class nitriles-buliding-blocks, name is 2,3-Dimethoxybenzonitrile, and the molecular formula is C9H9NO2, Recommanded Product: 2,3-Dimethoxybenzonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhao, Yun-Xiu’s team published research in International Biodeterioration & Biodegradation in 2019-11-30 | CAS: 100-70-9

International Biodeterioration & Biodegradation published new progress about Aquation. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.

Zhao, Yun-Xiu published the artcileNeonicotinoid thiacloprid transformation by the N2-fixing bacterium Microvirga flocculans CGMCC 1.16731 and toxicity of the amide metabolite, Recommanded Product: Picolinonitrile, the main research area is Microvirga Daphnia neonicotinoid thiacloprid transformation amide metabolite toxicity.

Thiacloprid is a widely-used neonicotinoid insecticide, but its enzymic conversion and the toxicity of the amide metabolite are poorly understood. Here, a N2-fixing bacterium, Microvirga flocculans CGMCC 1.16731, was reported to metabolize thiacloprid via hydration and hydroxylation to thiacloprid amide and 4-hydroxy thiacloprid resp. M. flocculans transformed 90.5% of 0.63 mmol/L thiacloprid in 30 h with a half-life of 9.0 h. In soil, the bacterium transformed 92.4% of 80 μmol/kg soil thiacloprid in 9 d. A cobalt-type nitrile hydratase (NHase) composed of an α-subunit (TnhA) and a β-subunit (TnhB) converted thiacloprid to thiacloprid amide. Co-expression of activator (TnhC) with NHase could improve the TnhA solubility and therefore enhanced 4-folds higher NHase activity. The NHase produced recombinantly in Escherichia coli transformed 97% of 0.76 mmol/L thiacloprid in 10 min. M. flocculans NHase had a Km value of 0.63 mmol/L and Vmax of 10.2 μmol/min/mg toward thiacloprid. Thiacloprid amide has higher toxic effect on growth of M. flocculans than thiacloprid, whereas lower toxic on the aquatic invertebrate Daphnia magna. Both thiacloprid and thiacloprid amide inhibited tnhA transcription. This increases our understanding of the enzymic mechanism of environmental fate of thiacloprid and toxicity of its amide metabolite toward soil microbes and aquatic organisms.

International Biodeterioration & Biodegradation published new progress about Aquation. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Cai, Xue’s team published research in Journal of Materials Science: Materials in Electronics in 2019-02-28 | CAS: 91-15-6

Journal of Materials Science: Materials in Electronics published new progress about Analysis. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Application of Phthalonitrile.

Cai, Xue published the artcileDimeric phthalocyanine-involved double-decker complex-based electrochemical sensor for simultaneous detection of acetaminophen and ascorbic acid, Application of Phthalonitrile, the main research area is acetaminophen ascorbic acid phthalocyanine double decker complex electrochem sensor.

An electrochem.sensor for simultaneous detection of acetaminophen (APAP) and ascorbic acid (AA) is firstly developed by using the self-assembled film of a novel dimeric bis(phthalocyaninato) europium complex, [{Pc(SC2H5)8}Eu{BiPc(SC2H5)12}Eu{Pc(SC2H5)8}] (1) coated onto ITO (fim-1/ITO) fabricated through a solution-processing quasi-LangmuirShafer (QLS) protocol. A combination of unique sandwich mol.structure with extented π-conjugated system and J-type aggregates with quite uniform nanograins (ca.15 nm) formed on ITO substrate render the film of 1 the excellent charge transfer ability and abundant electroactive sites, resulting in sensitive detection of APAP and AA with the good sensitivities of 254 and 85.6 mA μM-1 cm-2 and low detection limits of 1.3 and 3.7 μM for APAP and AA resp. More importantly, a simultaneous determinationof APAP and AA at a coexisting system of APAP and AA is also achieved with the still good sensitivities of 317 and 64.7 mA μM-1 cm-2, and low detection limits of 1.0 and 4.9 μM for APAP and AA resp. This work represents the first example of tetrapyrrole-based organicsemiconductor electrochem.sensor for simultaneous detection of APAP and AA with excellent sensing performance, implying the great application potential of electroactive sandwich rare earth tetrapyrrole compoundsin the nonenzymic electrochem.sensors.

Journal of Materials Science: Materials in Electronics published new progress about Analysis. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Application of Phthalonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Dorman, P. Matisha’s team published research in Journal of Molecular Spectroscopy in 2020-09-30 | CAS: 100-70-9

Journal of Molecular Spectroscopy published new progress about Analysis. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.

Dorman, P. Matisha published the artcileAn analysis of the rotational ground state and lowest-energy vibrationally excited dyad of 3-cyanopyridine: Low symmetry reveals rich complexity of perturbations, couplings, and interstate transitions, Recommanded Product: Picolinonitrile, the main research area is cyanopyridine perturbation coupling interstate transition rotational ground state.

The rotational spectrum of 3-cyanopyridine from 130 to 360 GHz was recorded, and an anal. of the ground state and two lowest-energy excited vibrational states was completed. Almost 6700 new transitions were measured for the ground state and fit to a partial octic, distorted-rotor Hamiltonian with low error (σfit < 0.05 MHz). The first two excited vibrational states, ν30 and ν21, are an isolated dyad that exhibits both a- and b-type Coriolis perturbations and requires a two-state, least-squares fit to fully predict the rotational spectrum and determine accurate spectroscopic constants Quartic and sextic distortion constants were determined for the dyad, along with seven symmetry-allowed perturbation terms: Ga, GaJ, Fbc, FbcK, Gb, GbJ, and GbK. Numerous resonances, including those following a-type selection rules, ΔKa = 2 or ΔKa = 4, and b-type selection rules, ΔKa = 3 or ΔKa = 5, were observed and fit. For ν30 and ν21, the energy difference (ΔE30,21 = 15.7524693 (37) cm-1), both Coriolis coupling constants (ζ30,21a = 0.8327 (9) and ΔE30,21b = -0.0181 (3)), and vibration-rotation interaction constants were determined exptl. and compared to theor. values determined computationally. Combined with the work on the vibrationally excited dyads of 4-cyanopyridine, Ph isocyanide, benzonitrile, and phenylacetylene, the coupling in ν30 and ν21 provides an opportunity to compare the Coriolis interactions of these analogus mono-substituted aromatic mols. in unusual detail. Addnl., this work improves the ground-state rotational constants and centrifugal distortion constants of 3-cyanopyridine and provides the fundamental constants needed to support an astronomical search for 3-cyanopyridine in the interstellar medium. Journal of Molecular Spectroscopy published new progress about Analysis. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Messick, Troy E.’s team published research in Molecules in 2020 | CAS: 87150-13-8

Molecules published new progress about Affinity. 87150-13-8 belongs to class nitriles-buliding-blocks, name is 4-(5-Oxazolyl)benzonitrile, and the molecular formula is C10H6N2O, Product Details of C10H6N2O.

Messick, Troy E. published the artcileBiophysical screens identify fragments that bind to the viral DNA-binding proteins EBNA1 and LANA, Product Details of C10H6N2O, the main research area is DNA EBNA1 LANA protein ligand interaction binding fragment NMR; biophys screen surface plasmon resonance saturation transfer difference; Epstein–Barr nuclear antigen 1; Epstein–Barr virus; Kaposi’s sarcoma associated herpesvirus (KSHV); fragment-based lead discovery; latency-associated nuclear antigen; protein–DNA interaction; saturation transfer difference-nuclear magnetic resonance; surface plasmon resonance.

The human gamma-herpesviruses Epstein-Barr virus (EBV) (HHV-4) and Kaposi’s sarcoma-associated herpesvirus (KSHV) (HHV-8) are responsible for a number of diseases, including various types of cancer. Epstein-Barr nuclear antigen 1 (EBNA1) from EBV and latency-associated nuclear antigen (LANA) from KSHV are viral-encoded DNA-binding proteins that are essential for the replication and maintenance of their resp. viral genomes during latent, oncogenic infection. As such, EBNA1 and LANA are attractive targets for the development of small-mol. inhibitors. To this end, we performed a biophys. screen of EBNA1 and LANA using a fragment library by saturation transfer difference (STD)-NMR spectroscopy and surface plasmon resonance (SPR). We identified and validated a number of unique fragment hits that bind to EBNA1 or LANA. We also determined the high-resolution crystal structure of one fragment bound to EBNA1. Results from this screening cascade provide new chem. starting points for the further development of potent inhibitors for this class of viral proteins.

Molecules published new progress about Affinity. 87150-13-8 belongs to class nitriles-buliding-blocks, name is 4-(5-Oxazolyl)benzonitrile, and the molecular formula is C10H6N2O, Product Details of C10H6N2O.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Begum, Robina’s team published research in Journal of Hazardous Materials in 2019-09-05 | CAS: 1885-29-6

Journal of Hazardous Materials published new progress about Microgels. 1885-29-6 belongs to class nitriles-buliding-blocks, name is 2-Aminobenzonitrile(Flakes or Chunks), and the molecular formula is C7H6N2, Related Products of nitriles-buliding-blocks.

Begum, Robina published the artcileReduction of nitroarenes catalyzed by microgel-stabilized silver nanoparticles, Related Products of nitriles-buliding-blocks, the main research area is nitroarene reduction microgel stabilized silver nanoparticle; Ag nanoparticles; Aryl amines; Catalytic reduction; Nitroarenes.

Poly(N-isopropylacrylamide-co-acrylamide) (PNA-BIS-2) microgels were synthesized by free radical precipitation polymerization in aqueous medium. Spherical Ag nanoparticles with diameter of 10-20 nm were fabricated inside the PNA-BIS-2 microgels by in-situ reduction of silver nitrate using sodium borohydride as reducing agent. The Ag nanoparticles- loaded hybrid microgels were characterized by SEM (SEM), Transmission electron microscopy (TEM), Energy dispersive X-ray (EDX), Scanning transmission electron microscopy (STEM), UV visible spectroscopy (UV Visible), Thermogravimetric anal. (TGA) and X-ray diffraction (XRD). Ag contents in the hybrid system were determined by inductively coupled plasma – optical emission spectrometry (ICP-OES). Various nitroarenes were successfully converted into their resp. aromatic amines with good to excellent yields (ranging from 75% to 97%) under mild reaction conditions. The catalyst has ability to successfully convert substituted nitroarenes into desired products keeping many functionalities intact. The catalyst can be stored for long time without any sign of aggregation and can be used multiple times without any significant loss in its catalytic activity.

Journal of Hazardous Materials published new progress about Microgels. 1885-29-6 belongs to class nitriles-buliding-blocks, name is 2-Aminobenzonitrile(Flakes or Chunks), and the molecular formula is C7H6N2, Related Products of nitriles-buliding-blocks.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Xu, Feng’s team published research in Advanced Synthesis & Catalysis in 2019 | CAS: 100-70-9

Advanced Synthesis & Catalysis published new progress about Cyanation. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.

Xu, Feng published the artcileHypervalent Iodine(III)-Mediated Regioselective Cyanation of Quinoline N-Oxides with Trimethylsilyl Cyanide, Recommanded Product: Picolinonitrile, the main research area is hypervalent iodine regioselective cyanation quinoline oxide trimethylsilyl cyanide; cyanoquinoline preparation.

A regioselective cyanation of quinoline N-oxides with trimethylsilyl cyanide was developed by using (Diacetoxyiodo) benzene (PIDA) as mediated hypervalent iodine(III) reagent under metal-free and base-free reaction conditions to obtain 2-cyanoquinolines. The efficient PIDA reagent could play the role of an activator of the substrates and an accelerator of N-O bond cleavage. The reaction system featured a wide range of substrate suitability and high yields. The procedure was enlarged gram-scale to synthesize the tuberculosis (TB) inhibitor. Finally, according to some exptl. results, a plausible mechanism for the cyanation reaction is proposed.

Advanced Synthesis & Catalysis published new progress about Cyanation. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Cai, Mingzhong’s team published research in Catalysis Letters in 2022-09-30 | CAS: 100-70-9

Catalysis Letters published new progress about Cyanation. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, SDS of cas: 100-70-9.

Cai, Mingzhong published the artcileRecyclable and Reusable Pd(OAc)2/XPhos-SO3Na/PEG-400/H2O System for Cyanation of Aryl Chlorides with Potassium Ferrocyanide, SDS of cas: 100-70-9, the main research area is reusable palladium acetate XPhos sulfonate catalyst cyanation aryl chloride.

Pd(OAc)2/XPhos-SO3Na in a mixture of poly(ethylene glycol) (PEG-400) and water is shown to be a highly efficient catalyst for the cyanation of aryl chlorides with potassium ferrocyanide. The reaction proceeded smoothly at 100 or 120°C with K2CO3 or KOAc as base, delivering a variety of aromatic nitriles in good to excellent yields. The isolation of the crude products is facilely performed by extraction with cyclohexane and more importantly, both expensive Pd(OAc)2 and XPhos-SO3Na in PEG-400/H2O system could be easily recycled and reused at least six times without any apparent loss of catalytic efficiency.

Catalysis Letters published new progress about Cyanation. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, SDS of cas: 100-70-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts