Fu, Zhengqiang’s team published research in Journal of Organic Chemistry in 2021-02-05 | CAS: 1885-29-6

Journal of Organic Chemistry published new progress about Amidation. 1885-29-6 belongs to class nitriles-buliding-blocks, name is 2-Aminobenzonitrile(Flakes or Chunks), and the molecular formula is C7H6N2, Name: 2-Aminobenzonitrile(Flakes or Chunks).

Fu, Zhengqiang published the artcileManganese Catalyzed Direct Amidation of Esters with Amines, Name: 2-Aminobenzonitrile(Flakes or Chunks), the main research area is amide preparation; ester amine amidation manganese catalyst.

The transition metal catalyzed amide bond forming reaction of esters with amines has been developed as an advanced approach for overcoming the shortcomings of traditional methods. The broad scope of substrates in transition metal catalyzed amidations remains a challenge. Here, a manganese(I)-catalyzed method for the direct synthesis of amides from a various number of esters and amines is reported with unprecedented substrate scope using a low catalyst loading. A wide range of aromatic, aliphatic, and heterocyclic esters, even in fatty acid esters, reacted with a diverse range of primary aryl amines, primary alkyl amines, and secondary alkyl amines to form amides. It is noteworthy that this approach provides the first example of the transition metal catalyzed amide bond forming reaction from fatty acid esters and amines. The acid-base mechanism for the manganese(I)-catalyzed direct amidation of esters with amines was elucidated by DFT calculations

Journal of Organic Chemistry published new progress about Amidation. 1885-29-6 belongs to class nitriles-buliding-blocks, name is 2-Aminobenzonitrile(Flakes or Chunks), and the molecular formula is C7H6N2, Name: 2-Aminobenzonitrile(Flakes or Chunks).

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Islam, Sk Manirul’s team published research in Applied Organometallic Chemistry in 2014 | CAS: 5653-62-3

Applied Organometallic Chemistry published new progress about Amidation. 5653-62-3 belongs to class nitriles-buliding-blocks, name is 2,3-Dimethoxybenzonitrile, and the molecular formula is C9H9NO2, Formula: C9H9NO2.

Islam, Sk Manirul published the artcilePolymer-anchored Ru(II) complex as an efficient catalyst for the synthesis of primary amides from nitriles and of secondary amides from alcohols and amines, Formula: C9H9NO2, the main research area is nitrile polymer anchored ruthenium complex hydration catalyst; primary amide preparation green chem; alc amine polymer anchored ruthenium complex oxidative coupling catalyst; secondary amide preparation green chem; polymer anchored ruthenium complex preparation hydration oxidative amidation catalyst.

A polymer-anchored ruthenium(II) catalyst was synthesized and characterized. Its catalytic activity was evaluated for the preparation of primary amides from aqueous hydration of nitriles in neutral condition. A range of nitriles were successfully converted to their corresponding amides in good to excellent yields. The catalyst was also effective in the preparation of secondary amides from the coupling of alcs. and amines. The catalyst can be facilely recovered and reused six times without a significant decrease in its activity.

Applied Organometallic Chemistry published new progress about Amidation. 5653-62-3 belongs to class nitriles-buliding-blocks, name is 2,3-Dimethoxybenzonitrile, and the molecular formula is C9H9NO2, Formula: C9H9NO2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Nelson, Derek W.’s team published research in Journal of Medicinal Chemistry in 2006-06-15 | CAS: 5653-62-3

Journal of Medicinal Chemistry published new progress about Allodynia. 5653-62-3 belongs to class nitriles-buliding-blocks, name is 2,3-Dimethoxybenzonitrile, and the molecular formula is C9H9NO2, Name: 2,3-Dimethoxybenzonitrile.

Nelson, Derek W. published the artcileStructure-Activity Relationship Studies on a Series of Novel, Substituted 1-Benzyl-5-phenyltetrazole P2X7 Antagonists, Name: 2,3-Dimethoxybenzonitrile, the main research area is enzylphenyltetrazole derivative SAR preparation P2X7 receptor antagonist.

1-Benzyl-5-aryltetrazoles were discovered to be novel antagonists for the P2X7 receptor. Structure-activity relationship (SAR) studies were conducted around both the benzyl and Ph moieties. In addition, the importance of the regiochem. substitution on the tetrazole was examined Compounds were evaluated for activity to inhibit calcium flux in both human and rat recombinant P2X7 cell lines using fluorometric imaging plate reader technol. Analogs were also assayed for their ability to inhibit IL-1β release and to inhibit P2X7-mediated pore formation in human THP-1 cells. Compound 15d was advanced to efficacy studies in a model of neuropathic pain where significant reversal of mech. allodynia was observed at doses that did not affect motor coordination.

Journal of Medicinal Chemistry published new progress about Allodynia. 5653-62-3 belongs to class nitriles-buliding-blocks, name is 2,3-Dimethoxybenzonitrile, and the molecular formula is C9H9NO2, Name: 2,3-Dimethoxybenzonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Wimmer, Eric’s team published research in Reaction Chemistry & Engineering in 2019 | CAS: 100-70-9

Reaction Chemistry & Engineering published new progress about Algorithm. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.

Wimmer, Eric published the artcileAn autonomous self-optimizing flow machine for the synthesis of pyridine-oxazoline (PyOX) ligands, Recommanded Product: Picolinonitrile, the main research area is pyridine oxazoline ligand self optimizing flow machine.

Pyridine-oxazoline-type ligands (PyOX) are an important class of chiral ligands for metal-catalyzed asym. transformations. Herein we describe an efficient and reliable flow route which is amenable for the synthesis of PyOX ligands at a scale of hundreds of milligrams per h. Optimal flow conditions were rapidly identified through the assistance of an inhouse built autonomous self-optimizing system integrating a custom-made optimization algorithm derived from the Nelder-Mead and golden section search methods. The preparation of a small library of representative PyOX ligands highlights the practical application of this flow route which should be of primary interest for synthetic chemists developing metal-catalyzed asym. transformations.

Reaction Chemistry & Engineering published new progress about Algorithm. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Kamiya, Yusuke’s team published research in Biochemical Pharmacology (Amsterdam, Netherlands) in 2021-10-31 | CAS: 91-15-6

Biochemical Pharmacology (Amsterdam, Netherlands) published new progress about Algorithm. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Computed Properties of 91-15-6.

Kamiya, Yusuke published the artcilePrediction of permeability across intestinal cell monolayers for 219 disparate chemicals using in vitro experimental coefficients in a pH gradient system and in silico analyses by trivariate linear regressions and machine learning, Computed Properties of 91-15-6, the main research area is intestinal cell monolayer permeability silico TLR machine learning; Caco-2 cells; Machine learning; Multivariate analysis; Octanol–water distribution coefficient; Permeability.

For medicines, the apparent membrane permeability coefficients (Papp) across human colorectal carcinoma cell line (Caco-2) monolayers under a pH gradient generally correlate with the fraction absorbed after oral intake. Furthermore, the in vitro Papp values of 29 industrial chems. were found to have an inverse association with their reported no-observed effect levels for hepatotoxicity in rats. In the current study, we expanded our influx permeability predictions for the 90 previously investigated chems. to both influx and efflux permeability predictions for 207 diverse primary compounds, along with those for 23 secondary compounds Trivariate linear regression anal. found that the observed influx and efflux logPapp values determined by in vitro experiments significantly correlated with mol. weights and the octanol-water distribution coefficients at apical and basal pH levels (pH 6.0 and 7.4, resp.) (apical to basal, r = 0.76, n = 198; and basal to apical, r = 0.77, n = 202); the distribution coefficients were estimated in silico. Further, prediction accuracy was enhanced by applying a light gradient boosting machine learning system (LightGBM) to estimate influx and efflux logPapp values that incorporated 17 and 19 in silico chem. descriptors (r = 0.83-0.84, p < 0.001). The determination in vitro and/or prediction in silico of permeability coefficients across intestinal cell monolayers of a diverse range of industrial chems./food components/medicines could contribute to the safety evaluations of oral intakes of general chems. in humans. Such new alternative methods could also reduce the need for animal testing during toxicity assessment. Biochemical Pharmacology (Amsterdam, Netherlands) published new progress about Algorithm. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Computed Properties of 91-15-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Nakagawa, Masayuki’s team published research in Journal of Agricultural and Food Chemistry in 1974 | CAS: 34133-58-9

Journal of Agricultural and Food Chemistry published new progress about Photolysis. 34133-58-9 belongs to class nitriles-buliding-blocks, name is 4-Hydroxyisophthalonitrile, and the molecular formula is C8H4N2O, Safety of 4-Hydroxyisophthalonitrile.

Nakagawa, Masayuki published the artcilePhotonucleophilic reactions of nitrofen, Safety of 4-Hydroxyisophthalonitrile, the main research area is nitrofen photonucleophilic reaction; photolysis nitrofen.

Irradiation of nitrofen (I) [1836-75-5] in the presence of KCN formed 2,4-dichlorobenzonitrile [6574-98-7] and related compounds, whereas the photoreaction with piperidine formed p-nitrophenol [100-02-7] and tarry products from the addnl. reactions of the intermediate 2,4-dichlorophenol [120-83-2] with piperidine. 2,4-Dichlorophenol also reacted with KCN to form 2,4-dicyanophenol [34133-58-9]. These and other photonucleophilic reactions may help to explain the environmental dissipation of many pesticides.

Journal of Agricultural and Food Chemistry published new progress about Photolysis. 34133-58-9 belongs to class nitriles-buliding-blocks, name is 4-Hydroxyisophthalonitrile, and the molecular formula is C8H4N2O, Safety of 4-Hydroxyisophthalonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Molaei, Somayeh’s team published research in Applied Organometallic Chemistry in 2019 | CAS: 91-15-6

Applied Organometallic Chemistry published new progress about IR spectra. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Safety of Phthalonitrile.

Molaei, Somayeh published the artcileOrdered mesoporous SBA-15 functionalized with yttrium(III) and cerium(III) complexes: Towards active heterogeneous catalysts for oxidation of sulfides and preparation of 5-substituted 1H-tetrazoles, Safety of Phthalonitrile, the main research area is sulfoxide tetrazole preparation SBA 15 functionalized yttrium cerium complex; sulfide nitrile oxidation.

Mesoporous SBA-15 was synthesized and modified with 3-chloropropyltrimethoxysilane and then used in immobilization of creatinine groups, which were employed to introduce Y3+ and Ce3+ to give rise to two novel yttrium and cerium catalysts: SBA-15@Creatinine@M (M = Y and Ce). The structures of the SBA-15@Creatinine@M catalysts were determined using various techniques. These catalysts offered outstanding catalytic performances in the oxidation of sulfides to sulfoxides and in the preparation of 5-substituted 1H-tetrazoles. An important characteristic of the SBA-15@Creatinine@M catalysts is that they are very stable without a considerable decrease in their catalytic performance lasting seven cycles.

Applied Organometallic Chemistry published new progress about IR spectra. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Safety of Phthalonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Lee, Chuping’s team published research in Rapid Communications in Mass Spectrometry in 2021 | CAS: 91-15-6

Rapid Communications in Mass Spectrometry published new progress about Ionization. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Application In Synthesis of 91-15-6.

Lee, Chuping published the artcileToward understanding the ionization mechanism of matrix-assisted ionization using mass spectrometry experiment and theory, Application In Synthesis of 91-15-6, the main research area is ionization mechanism MALDI mass spectrometry experiment theory.

Rationale : Matrix-assisted ionization (MAI) mass spectrometry does not require voltages, a laser beam, or added heat to initiate ionization, but it is strongly dependent on the choice of matrix and the vacuum conditions. High charge state distributions of nonvolatile analyte ions produced by MAI suggest that the ionization mechanism may be similar to that of electrospray ionization (ESI), but different from matrix-assisted laser desorption/ionization (MALDI). While significant information is available for MAI using mass spectrometers operating at atm. and intermediate pressure, little is known about the mechanism at high vacuum. Methods : Eleven MAI matrixes were studied on a high-vacuum time-of-flight (TOF) mass spectrometer using a 266. nm pulsed laser beam under otherwise typical MALDI conditions. Detailed comparisons with the commonly used MALDI matrixes and theor. prediction were made for 3-nitrobenzonitrile (3-NBN), which is the only MAI matrix that works well in high vacuum when irradiated with a laser. Results : Screening of MAI matrixes with good absorption at 266 nm but with various degrees of volatility and laser energies suggests that volatility and absorption at the laser wavelength may be necessary, but not sufficient, criteria to explain the formation of multiply charged analyte ions. 3-NBN produces intact, highly charged ions of nonvolatile analytes in high-vacuum TOF using a laser, demonstrating that ESI-like ions can be produced in high vacuum. Theor. calculations and mass spectra suggest that thermally induced proton transfer, which is the major ionization mechanism in MALDI, is not important with the 3-NBN matrix at 266 nm laser wavelength. 3-NBN:analyte crystal morphol. is, however, important in ion generation in high vacuum. Conclusions : The 3-NBN MAI matrix produces intact, highly charged ions of nonvolatile compounds in high-vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, and shows a different ionization mechanism from that of typical MALDI matrixes.

Rapid Communications in Mass Spectrometry published new progress about Ionization. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Application In Synthesis of 91-15-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

McEwen, Charles N.’s team published research in Journal of the American Society for Mass Spectrometry in 2021-01-06 | CAS: 91-15-6

Journal of the American Society for Mass Spectrometry published new progress about Impurities. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Synthetic Route of 91-15-6.

McEwen, Charles N. published the artcileSublimation Driven Ionization for Use in Mass Spectrometry: Mechanistic Implications, Synthetic Route of 91-15-6, the main research area is mass spectrometry ionization sublimation driven.

Sublimation has been known at least since the middle ages. This process is frequently taught in schools through the use of phase diagrams. Astonishingly, such a well-known process appears to still harbor secrets. Under conditions in which compound sublimation occurs, gas-phase ions are frequently detected using mass spectrometry. This was exploited in matrix-assisted ionization in vacuum (vMAI) by adding analyte to subliming compounds used as matrixes. Good vMAI matrixes were those that ionize the added analyte with high sensitivity, but even matrixes that fail this test often produce ions of likely matrix impurities suggesting that they may be good matrixes for some compound types. We also show that binary matrixes may be manipulated to provide desired properties such as fast analyses and improved sensitivity. These results imply that sublimation in some cases is more complicated than just mols. leaving a surface and that understanding the phys. force responsible, and how the nonvolatile compound becomes charged, could lead to improved ionization efficiency for mass spectrometry. Here we provide insights into this process and an explanation of why this unexpected phenomenon has not previously been reported.

Journal of the American Society for Mass Spectrometry published new progress about Impurities. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Synthetic Route of 91-15-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Gong, Zi-Jie’s team published research in Applied Catalysis, B: Environmental in 2020-05-15 | CAS: 100-70-9

Applied Catalysis, B: Environmental published new progress about Grain size. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Safety of Picolinonitrile.

Gong, Zi-Jie published the artcileDirect copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst, Safety of Picolinonitrile, the main research area is carbon dioxide butanediol direct copolymerization ceria nanorod catalyst.

Direct copolymerization of CO2 and 1,4-butanediol to yield poly(butylene carbonate) oligomers has been recently realized using CeO2 as a catalyst and 2-cyanopyridine as a dehydrating agent. In this study, CeO2 nanorod and nanocube were synthesized, characterized, and compared their catalytic activities with com. CeO2 nanoparticle and submicronparticle. Reaction testing reveals that CeO2 nanorod exhibits a much higher yield of polycarbonate oligomer than other CeO2 catalysts. Surface characterizations indicate that CeO2 nanorod displays a significantly higher CO2 uptake and stronger interactions with CO2, properties that could be beneficial to activate stable CO2 mol. In-situ IR spectroscopy suggests that bidentate carbonate, i.e., CO2 adsorbs over the CeO2 surface with an oxygen atom and an oxygen vacancy coordinated with a cerium atom, is the key intermediate associated with the observed catalytic activities. These results manifest the importance of surface oxygen vacancy of CeO2 for activating CO2 to proceed non-reductive conversion.

Applied Catalysis, B: Environmental published new progress about Grain size. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Safety of Picolinonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts