Leung, Suet C. et al. published their research in Journal of Medicinal Chemistry in 2012 | CAS: 37812-51-4

4-(Morpholinomethyl)benzonitrile (cas: 37812-51-4) belongs to nitriles. Nitrile compounds can be prepared by the incorporation of a cyanide source through C–C bond formation or by dehydration of primary carboxamides. Asymmetric bioreduction of nitriles is an attractive route to produce optically active nitriles as current metal-catalyzed hydrogenations tend to have low reactivity.Application In Synthesis of 4-(Morpholinomethyl)benzonitrile

Identification, Design and Biological Evaluation of Heterocyclic Quinolones Targeting Plasmodium falciparum Type II NADH:Quinone Oxidoreductase (PfNDH2) was written by Leung, Suet C.;Gibbons, Peter;Amewu, Richard;Nixon, Gemma L.;Pidathala, Chandrakala;Hong, W. David;Pacorel, Benedicte;Berry, Neil G.;Sharma, Raman;Stocks, Paul A.;Srivastava, Abhishek;Shone, Alison E.;Charoensutthivarakul, Sitthivut;Taylor, Lee;Berger, Olivier;Mbekeani, Alison;Hill, Alasdair;Fisher, Nicholas E.;Warman, Ashley J.;Biagini, Giancarlo A.;Ward, Stephen A.;O’Neill, Paul M.. And the article was included in Journal of Medicinal Chemistry in 2012.Application In Synthesis of 4-(Morpholinomethyl)benzonitrile This article mentions the following:

Following a program undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a novel enzyme target within the malaria parasite Plasmodium falciparum, hit to lead optimization led to identification of CK-2-68, a mol. suitable for further development. To reduce ClogP and improve solubility of CK-2-68 incorporation of a variety of heterocycles, within the side chain of the quinolone core, was carried out, and this approach led to a lead compound SL-2-25 (I). I has IC50s in the nanomolar range vs. both the enzyme and whole cell P. falciparum (IC50 = 15 nM PfNDH2; IC50 = 54 nM (3D7 strain of P. falciparum)) with notable oral activity of ED50/ED90 of 1.87/4.72 mg/kg vs. Plasmodium berghei (NS Strain) in a murine model of malaria when formulated as a phosphate salt. Analogs in this series also demonstrate nanomolar activity against the bc1 complex of P. falciparum providing the potential added benefit of a dual mechanism of action. The potent oral activity of 2-pyridyl quinolones underlines the potential of this template for further lead optimization studies. In the experiment, the researchers used many compounds, for example, 4-(Morpholinomethyl)benzonitrile (cas: 37812-51-4Application In Synthesis of 4-(Morpholinomethyl)benzonitrile).

4-(Morpholinomethyl)benzonitrile (cas: 37812-51-4) belongs to nitriles. Nitrile compounds can be prepared by the incorporation of a cyanide source through C–C bond formation or by dehydration of primary carboxamides. Asymmetric bioreduction of nitriles is an attractive route to produce optically active nitriles as current metal-catalyzed hydrogenations tend to have low reactivity.Application In Synthesis of 4-(Morpholinomethyl)benzonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Sabnis, Ram W. et al. published their research in Journal of Chemical Technology and Biotechnology in 1990 | CAS: 58168-20-0

Ethyl 5-amino-4-cyano-3-(2-ethoxy-2-oxoethyl)thiophene-2-carboxylate (cas: 58168-20-0) belongs to nitriles. Nitriles are polar, as indicated by high dipole moments. As liquids, they have high relative permittivities, often in the 30s. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Application In Synthesis of Ethyl 5-amino-4-cyano-3-(2-ethoxy-2-oxoethyl)thiophene-2-carboxylate

Synthesis of 2-azo-3-cyano-5-carbethoxy thiophene derivatives and their application on polyester fibers was written by Sabnis, Ram W.;Rangnekar, Dinesh W.. And the article was included in Journal of Chemical Technology and Biotechnology in 1990.Application In Synthesis of Ethyl 5-amino-4-cyano-3-(2-ethoxy-2-oxoethyl)thiophene-2-carboxylate This article mentions the following:

Synthesis of 2-(hetaryl or aryl)-azo thiophene derivatives was achieved by diazotization of Et 2-amino-3-cyano-5-carbethoxythiophene-4-acetate (I) using nitrosylsulfuric acid and coupling with suitable heterocyclic hydroxy and N,N-dialkyl-substituted aryl amines. I was synthesized in one pot and in excellent yield from di-Et acetonedicarboxylate, S and malonitrile, using HNEt2 as a catalyst, following the Gewald synthesis. The spectral properties of these dyes were studied. The dyes when applied as disperse dyes on polyester fibers gave excellent results. In the experiment, the researchers used many compounds, for example, Ethyl 5-amino-4-cyano-3-(2-ethoxy-2-oxoethyl)thiophene-2-carboxylate (cas: 58168-20-0Application In Synthesis of Ethyl 5-amino-4-cyano-3-(2-ethoxy-2-oxoethyl)thiophene-2-carboxylate).

Ethyl 5-amino-4-cyano-3-(2-ethoxy-2-oxoethyl)thiophene-2-carboxylate (cas: 58168-20-0) belongs to nitriles. Nitriles are polar, as indicated by high dipole moments. As liquids, they have high relative permittivities, often in the 30s. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Application In Synthesis of Ethyl 5-amino-4-cyano-3-(2-ethoxy-2-oxoethyl)thiophene-2-carboxylate

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Murohashi, Susumu et al. published their research in Nagaoka Kogyo Tanki Daigaku Koto Semmon Gakko Kenkyu Kiyo in 1968 | CAS: 7528-78-1

3,3′,3”-Nitrilotripropanenitrile (cas: 7528-78-1) belongs to nitriles. Nitrile function is a very important functional group because it can be manipulated to other functional groups such as carboxylic acid by hydrolysis or amine by reduction, respectively. Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. Both routes are green in the sense that they do not generate stoichiometric amounts of salts.Name: 3,3′,3”-Nitrilotripropanenitrile

Amination of acrylonitrile in liquid ammonia was written by Murohashi, Susumu. And the article was included in Nagaoka Kogyo Tanki Daigaku Koto Semmon Gakko Kenkyu Kiyo in 1968.Name: 3,3′,3”-Nitrilotripropanenitrile This article mentions the following:

The title reaction was studied with or without a catalyst. Acrylonitrile (1 mole) was treated with liquid NH3 (>10 moles) in an autoclave at 100° for 30 min. in the presence of Raney Cu or Co to give mono(β-cyanoethyl)amine as the main product in 80% yield. Tris(β-cyanoethyl)amine was obtained when no catalyst or the Raney catalyst together with a polymerization inhibitor was used, while the bis- and tris(β-cyanoethyl)amines were produced in the presence of Raney Ni. After the amination, only the Co catalyst among Raney metal catalysts kept the ability as a hydrogenation catalyst. Successive amination and hydrogenation of acrylonitrile without isolation of the intermediate or further addition of the catalyst gave 1,3-propanediol in 80% yield. Gas chromatographic determination and life of the catalyst were also discussed. In the experiment, the researchers used many compounds, for example, 3,3′,3”-Nitrilotripropanenitrile (cas: 7528-78-1Name: 3,3′,3”-Nitrilotripropanenitrile).

3,3′,3”-Nitrilotripropanenitrile (cas: 7528-78-1) belongs to nitriles. Nitrile function is a very important functional group because it can be manipulated to other functional groups such as carboxylic acid by hydrolysis or amine by reduction, respectively. Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. Both routes are green in the sense that they do not generate stoichiometric amounts of salts.Name: 3,3′,3”-Nitrilotripropanenitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Friel, Donna K. et al. published their research in Journal of the American Chemical Society in 2008 | CAS: 36057-44-0

4-methoxypicolinonitrile (cas: 36057-44-0) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Recommanded Product: 36057-44-0

Aluminum-Catalyzed Asymmetric Alkylations of Pyridyl-Substituted Alkynyl Ketones with Dialkylzinc Reagents was written by Friel, Donna K.;Snapper, Marc L.;Hoveyda, Amir H.. And the article was included in Journal of the American Chemical Society in 2008.Recommanded Product: 36057-44-0 This article mentions the following:

Alkylations of pyridyl-substituted ynones with Et2Zn and Me2Zn, promoted by amino acid-based chiral ligands in the presence of Al-based alkoxides, afford tertiary propargyl alcs. efficiently in 57% to >98% ee. Two easily accessible chiral ligands are identified as optimal for reactions of the two dialkylzinc reagents. Catalytic alkylations with Et2Zn require a chiral ligand carrying two amino acid moieties (valine and phenylalanine) along with a p-trifluoromethylphenylamide C-terminus. In contrast, reactions with Me2Zn are most effectively promoted in the presence of a chiral ligand containing a single amino acid (benzyl cysteine), capped by an n-butylamide. Enantiomerically enriched tertiary alcs. bearing a pyridyl and an alkyne substituent can be functionalized in a variety of manners to furnish a wide range of difficult-to-access acyclic and heterocyclic structures; two noteworthy examples are Cu-catalyzed protocols for conversion of tertiary propargyl alcs. to enantiomerically enriched tetrasubstituted allenes and bicyclic amides that bear an N-substituted quaternary carbon stereogenic center. Mechanistic models that account for the trends and enantioselectivity levels are provided. In the experiment, the researchers used many compounds, for example, 4-methoxypicolinonitrile (cas: 36057-44-0Recommanded Product: 36057-44-0).

4-methoxypicolinonitrile (cas: 36057-44-0) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Recommanded Product: 36057-44-0

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Shi, Yongjia et al. published their research in Angewandte Chemie, International Edition in 2022 | CAS: 4435-14-7

2-Cyclohexylacetonitrile (cas: 4435-14-7) belongs to nitriles. Nitriles are polar, as indicated by high dipole moments. As liquids, they have high relative permittivities, often in the 30s. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Formula: C8H13N

Iridium-Catalyzed Enantioselective C(sp3)-H Borylation of Aminocyclopropanes was written by Shi, Yongjia;Yang, Yuhuan;Xu, Senmiao. And the article was included in Angewandte Chemie, International Edition in 2022.Formula: C8H13N This article mentions the following:

Transition-metal-catalyzed regio- and stereo-controllable C-H functionalization remains a formidable challenge in asym. catalysis. Herein, we disclose the first example of iridium-catalyzed C(sp3)-H borylation of aminocyclopropanes by using simple imides as weakly coordinating directing groups under mild reaction conditions. The reaction proceeded via a six-membered iridacycle, affording a vast range of chiral aminocyclopropyl boronates. The current method features a broad spectrum of functional groups (36 examples) and high enantioselectivities (up to 99%). We also demonstrated the synthetic utility by a preparative scale C-H borylation, C-B bond transformations, and conversion of the directing group. In the experiment, the researchers used many compounds, for example, 2-Cyclohexylacetonitrile (cas: 4435-14-7Formula: C8H13N).

2-Cyclohexylacetonitrile (cas: 4435-14-7) belongs to nitriles. Nitriles are polar, as indicated by high dipole moments. As liquids, they have high relative permittivities, often in the 30s. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Formula: C8H13N

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Nyuchev, Alexander V. et al. published their research in Beilstein Journal of Organic Chemistry in 2020 | CAS: 63968-85-4

2-(Trifluoromethoxy)benzonitrile (cas: 63968-85-4) belongs to nitriles. There has been no report on the microbial biosynthesis of nitriles and the physiological function of such enzymes, nor was it not even known whether aliphatic and aromatic nitriles are biological compounds or just petrochemicals. Some nitriles are manufactured by heating carboxylic acids with ammonia in the presence of catalysts. This process is used to make nitriles from natural fats and oils, the products being used as softening agents in synthetic rubbers, plastics, and textiles and for making amines.HPLC of Formula: 63968-85-4

Photocatalytic trifluoromethoxylation of arenes and heteroarenes in continuous-flow was written by Nyuchev, Alexander V.;Wan, Ting;Cendon, Borja;Sambiagio, Carlo;Struijs, Job J. C.;Ho, Michelle;Gulias, Moises;Wang, Ying;Noe, Timothy. And the article was included in Beilstein Journal of Organic Chemistry in 2020.HPLC of Formula: 63968-85-4 This article mentions the following:

The first example of photocatalytic trifluoromethoxylation of arenes and heteroarenes, e.g., I under continuous-flow conditions is described. Application of continuous-flow microreactor technol. allowed to reduce the residence time up to 16 times in comparison to the batch procedure, while achieving similar or higher yields. In addition, the use of inorganic bases was demonstrated to increase the reaction yield under batch conditions. In the experiment, the researchers used many compounds, for example, 2-(Trifluoromethoxy)benzonitrile (cas: 63968-85-4HPLC of Formula: 63968-85-4).

2-(Trifluoromethoxy)benzonitrile (cas: 63968-85-4) belongs to nitriles. There has been no report on the microbial biosynthesis of nitriles and the physiological function of such enzymes, nor was it not even known whether aliphatic and aromatic nitriles are biological compounds or just petrochemicals. Some nitriles are manufactured by heating carboxylic acids with ammonia in the presence of catalysts. This process is used to make nitriles from natural fats and oils, the products being used as softening agents in synthetic rubbers, plastics, and textiles and for making amines.HPLC of Formula: 63968-85-4

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Xu, Yulong et al. published their research in Advanced Synthesis & Catalysis in 2012 | CAS: 101219-69-6

(R)-4-(1-Hydroxyethyl)benzonitrile (cas: 101219-69-6) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Related Products of 101219-69-6

An ion-pair immobilization strategy in rhodium-catalyzed asymmetric transfer hydrogenation of aromatic ketones was written by Xu, Yulong;Cheng, Tanyu;Long, Jie;Liu, Ketang;Qian, Qingqian;Gao, Fei;Liu, Guohua;Li, Hexing. And the article was included in Advanced Synthesis & Catalysis in 2012.Related Products of 101219-69-6 This article mentions the following:

A chiral diamine-based homogeneous cationic rhodium catalyst was developed and two heterogeneous cationic rhodium catalysts were obtained via the encapsulation of the homogeneous cationic rhodium catalyst within Me-SBA-15 and Me-SBA-16. All these catalysts presented excellent catalytic activities and high enantioselectivities in ultrasound-promoted asym. transfer hydrogenation of aromatic ketones and represent a successful use of the ion-pair immobilization strategy. More importantly, the encapsulation of the cationic rhodium functionality within Me-SBA-16 had an obvious high recyclability, in which the recycled catalyst could be reused nine times without significantly affecting its enantioselectivity, showing good potential in industrial application. In the experiment, the researchers used many compounds, for example, (R)-4-(1-Hydroxyethyl)benzonitrile (cas: 101219-69-6Related Products of 101219-69-6).

(R)-4-(1-Hydroxyethyl)benzonitrile (cas: 101219-69-6) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Related Products of 101219-69-6

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Gonzalez-Lopez de Turiso, Felix et al. published their research in Journal of Medicinal Chemistry in 2016 | CAS: 60025-09-4

4-Amino-6-chloropyrimidine-5-carbonitrile (cas: 60025-09-4) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Product Details of 60025-09-4

Discovery and in Vivo Evaluation of the Potent and Selective PI3Kδ Inhibitors 2-((1S)-1-((6-Amino-5-cyano-4-pyrimidinyl)amino)ethyl)-6-fluoro-N-methyl-3-(2-pyridinyl)-4-quinolinecarboxamide (AM-0687) and 2-((1S)-1-((6-Amino-5-cyano-4-pyrimidinyl)amino)ethyl)-5-fluoro-N-methyl-3-(2-pyridinyl)-4-quinolinecarboxamide (AM-1430) was written by Gonzalez-Lopez de Turiso, Felix;Hao, Xiaolin;Shin, Youngsook;Bui, Minna;Campuzano, Iain D. G.;Cardozo, Mario;Dunn, Michelle C.;Duquette, Jason;Fisher, Benjamin;Foti, Robert S.;Henne, Kirk;He, Xiao;Hu, Yi-Ling;Kelly, Ron C.;Johnson, Michael G.;Lucas, Brian S.;McCarter, John;McGee, Lawrence R.;Medina, Julio C.;Metz, Daniela;San Miguel, Tisha;Mohn, Deanna;Tran, Thuy;Vissinga, Christine;Wannberg, Sharon;Whittington, Douglas A.;Whoriskey, John;Yu, Gang;Zalameda, Leeanne;Zhang, Xuxia;Cushing, Timothy D.. And the article was included in Journal of Medicinal Chemistry in 2016.Product Details of 60025-09-4 This article mentions the following:

Optimization of the potency and pharmacokinetic profile of the lead 2,3,4-trisubstituted quinoline led to the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, I (AM-0687) and II (AM-1430). On the basis of their improved profile, these analogs were selected for in vivo pharmacodynamic (PD) and efficacy experiments in animal models of inflammation. The in vivo PD studies, which were carried out in a mouse pAKT inhibition animal model, confirmed the observed potency of I and II in biochem. and cellular assays. Efficacy experiments in a keyhole limpet hemocyanin model in rats demonstrated that administration of either I or II resulted in a strong dose-dependent reduction of IgG and IgM specific antibodies. The excellent in vitro and in vivo profiles of these analogs make them suitable for further development. In the experiment, the researchers used many compounds, for example, 4-Amino-6-chloropyrimidine-5-carbonitrile (cas: 60025-09-4Product Details of 60025-09-4).

4-Amino-6-chloropyrimidine-5-carbonitrile (cas: 60025-09-4) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Product Details of 60025-09-4

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Guo, Hong-Mei et al. published their research in Nature Communications in 2021 | CAS: 24056-34-6

4-Hydroxycyclohexanecarbonitrile (cas: 24056-34-6) belongs to nitriles. Nitriles are polar, as indicated by high dipole moments. As liquids, they have high relative permittivities, often in the 30s. Alkyl nitriles are sufficiently acidic to undergo deprotonation of the C-H bond adjacent to the CN group.Strong bases are required, such as lithium diisopropylamide and butyl lithium. The product is referred to as a nitrile anion. Related Products of 24056-34-6

Selective deoxygenative alkylation of alcohols via photocatalytic domino radical fragmentations was written by Guo, Hong-Mei;Wu, Xuesong. And the article was included in Nature Communications in 2021.Related Products of 24056-34-6 This article mentions the following:

A one-pot strategy for deoxygenative Giese reaction of alcs. with electron-deficient alkenes, by using xanthate salts as alc.-activating groups for radical generation under visible-light photoredox conditions in the presence of triphenylphosphine were reported. The convenient generation of xanthate salts and high reactivity of sequential C-S/C-O bond homolytic cleavage enable efficient deoxygenation of primary, secondary and tertiary alcs. with diverse functionality and structure to generate the corresponding alkyl radicals, including Me radical. Moreover, chemoselective radical monodeoxygenation of diols was achieved via selective formation of xanthate salts. In the experiment, the researchers used many compounds, for example, 4-Hydroxycyclohexanecarbonitrile (cas: 24056-34-6Related Products of 24056-34-6).

4-Hydroxycyclohexanecarbonitrile (cas: 24056-34-6) belongs to nitriles. Nitriles are polar, as indicated by high dipole moments. As liquids, they have high relative permittivities, often in the 30s. Alkyl nitriles are sufficiently acidic to undergo deprotonation of the C-H bond adjacent to the CN group.Strong bases are required, such as lithium diisopropylamide and butyl lithium. The product is referred to as a nitrile anion. Related Products of 24056-34-6

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Bergman, Jan et al. published their research in Tetrahedron in 1986 | CAS: 68385-95-5

2-Amino-3,5-dibromobenzonitrile (cas: 68385-95-5) belongs to nitriles. Nitriles are polar, as indicated by high dipole moments. As liquids, they have high relative permittivities, often in the 30s. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Electric Literature of C7H4Br2N2

Synthesis of quinazolines was written by Bergman, Jan;Brynolf, Anna;Elman, Bjoern;Vuorinen, Eino. And the article was included in Tetrahedron in 1986.Electric Literature of C7H4Br2N2 This article mentions the following:

Reaction of RMgX (R = Me, Et, Ph, 4-MeC6H4, Me2CH, Bu; X = Cl, Br, iodo) with 2-H2NC6H4CN gave the intermediate 2-H2NC6H4CR:N (I), which were cyclized to quinazolines by reaction with carbonyl compounds (e.g., acid chlorides, anhydrides, formates, and oxalates). Reaction of I with aldehydes, e.g. PhCHO, gave 1,2-dihydroquinazolines, which were readily dehydrogenated. Reaction of I with ClCO2Me gave 4-phenyl-2-quinazolinone, which was reduced to 3,4-dihydro-4-phenyl-2-quinazolinone by NaBH4 in AcOH. In the experiment, the researchers used many compounds, for example, 2-Amino-3,5-dibromobenzonitrile (cas: 68385-95-5Electric Literature of C7H4Br2N2).

2-Amino-3,5-dibromobenzonitrile (cas: 68385-95-5) belongs to nitriles. Nitriles are polar, as indicated by high dipole moments. As liquids, they have high relative permittivities, often in the 30s. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Electric Literature of C7H4Br2N2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts