Yuan, Jie’s team published research in Journal of Physical Chemistry C in 2020-05-07 | CAS: 91-15-6

Journal of Physical Chemistry C published new progress about Aggregation. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Category: nitriles-buliding-blocks.

Yuan, Jie published the artcileActivating Intersystem Crossing and Aggregation Coupling by CN-Substitution for Efficient Organic Ultralong Room Temperature Phosphorescence, Category: nitriles-buliding-blocks, the main research area is activating intersystem crossing aggregation coupling cyano substitution phosphorescence.

Organic ultralong room-temperature phosphorescence (OURTP) has boomed recent advances of organic optoelectronics with the significant breakthrough in facilitating the intersystem crossing and stabilization of triplet excitons of purely organic materials. However, it remains a challenge in revealing the inherent mechanism of OURTP and the general mol. design principles of OURTP materials have yet to be reached, largely owing to the rather complicated and varied OURTP mol. structures. Here, we propose a facile strategy to design efficient OURTP materials by simply introducing a cyano group (CN) on benzene. On the basis of these very simple OURTP mols., it was found that the simultaneously enhanced intersystem crossing and aggregation coupling are two intrinsic prerequisites in realizing the efficient OURTP. The first observation of the excimer emission from the stabilized singlet excited states offers an important evidence for the mechanism study of OURTP, and the direct CN substitution on the benzene ring would be highly instructive for designing efficient OURTP mols.

Journal of Physical Chemistry C published new progress about Aggregation. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Category: nitriles-buliding-blocks.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Liu, Pingxian’s team published research in European Journal of Medicinal Chemistry in 2019-02-01 | CAS: 1885-29-6

European Journal of Medicinal Chemistry published new progress about Antifolates. 1885-29-6 belongs to class nitriles-buliding-blocks, name is 2-Aminobenzonitrile(Flakes or Chunks), and the molecular formula is C7H6N2, Computed Properties of 1885-29-6.

Liu, Pingxian published the artcileDesign and synthesis of novel pyrimidine derivatives as potent antitubercular agents, Computed Properties of 1885-29-6, the main research area is ceritinib pyrimidine analog preparation antitubercular mol docking; Antimycobacterial; Ceritinib; Dihydrofolate reductase inhibitors; Pyrimidine derivatives.

The emergence of various drug-resistant Mycobacterium tuberculosis (Mtb) strains has necessitated the exploration of new drugs that lack cross-resistance with existing therapeutics. By screening the MedChemExpress bioactive compound library, ceritinib was identified as a compound with activity against Mtb H37Ra. Ceritinib had a MIC value of 9.0 μM in vitro and demonstrated in vivo efficacy in a BALB/c mouse model infected with autoluminescent H37Ra. Then, 32 novel ceritinib derivatives were synthesized, and their antimycobacterial activities were evaluated in vitro. The antimycobacterial activities of the synthesized compounds were drastically affected by substitutions at position 4 of the pyrimidine nucleus and were enhanced by the presence of 2-isopropoxy-5-methyl-4-(piperidin-4-yl)aniline at position 2 of the pyrimidine nucleus. The in vivo antitubercular activities of the three most potent compounds were evaluated. 5-Chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl) phenyl)-N4-(naph thalen-1-yl) pyrimidine-2,4-diamine (I) remarkably reduced the Mtb burden of mice. This result suggested the potential of I as a novel drug with superior antitubercular activities. The results of experiments on the combination of sulfamethoxazole with I and in silico modeling suggest that dihydrofolate reductase is the potential mol. target of I.

European Journal of Medicinal Chemistry published new progress about Antifolates. 1885-29-6 belongs to class nitriles-buliding-blocks, name is 2-Aminobenzonitrile(Flakes or Chunks), and the molecular formula is C7H6N2, Computed Properties of 1885-29-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Yu, Yancheng’s team published research in European Journal of Medicinal Chemistry in 2021-02-05 | CAS: 91-15-6

European Journal of Medicinal Chemistry published new progress about Bond length. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Recommanded Product: Phthalonitrile.

Yu, Yancheng published the artcileInsight into the binding mode of HIF-2 agonists through molecular dynamic simulations and biological validation, Recommanded Product: Phthalonitrile, the main research area is hypoxia inducible factor agonist mol dynamic simulation; Agonist; Binding mode; HIF-2; Molecular dynamic simulations.

Hypoxia-inducible factor-2 (HIF-2), a heterodimeric transcriptional protein consisting of HIF-2α and aryl hydrocarbon receptor nuclear translocator (ARNT) subunits, has a broad transcriptional profile that plays a vital role in human oxygen metabolism M1001, a HIF-2 agonist identified by high-throughput screening (HTS), is capable of altering the conformation of Tyr281 of the HIF-2α PAS-B domain and enhancing the affinity of HIF-2α and ARNT for transcriptional activation. M1002, an analog of M1001, shows improved efficacy than M1001. However, the cocrystal structure of M1001 and HIF-2 has some defects in revealing the agonist binding mode due to the relatively low resolution, while the binding mode of M1002 remained unexplored. To in-depth understand agonist binding profiles, herein, the mol. dynamic (MD) simulations was applied to construct a stable agonist-protein model, and a possible binding mode was proposed through the anal. of the binding free energy and hydrogen bonding of the simulation results. Nine compounds were then synthesized and evaluated to verify the proposed binding mode. Among them, compound 10 manifested improved agonistic activity and reduced toxicity compared to M1002. This study provides deep insight into the binding mode of such HIF-2 agonists, which would be useful for designing novel agonists for HIF-2.

European Journal of Medicinal Chemistry published new progress about Bond length. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Recommanded Product: Phthalonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Gumrukcu, Selin’s team published research in Turkish Journal of Chemistry in 2021 | CAS: 91-15-6

Turkish Journal of Chemistry published new progress about Calcination. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Recommanded Product: Phthalonitrile.

Gumrukcu, Selin published the artcileIn-situ synthesis of phthalocyanines on electrospun TiO2 nanofiber by solvothermal process for photocatalytic degradation of methylene blue, Recommanded Product: Phthalonitrile, the main research area is phthalocyanine electrospun titanium dioxide nanofiber methylene blue photocatalytic degradation.

Titanium dioxide/phthalocyanine (TiO2/Pc), TiO2/fluor containing phthalocyanine (TiO2/FPc), and TiO2/fluor containing cobalt phthalocyanine (TiO2/FCoPc) had been successfully fabricated by a simple combination of phthalocyanines obtained by insitu synthesis on the surface of TiO2 nanofibers prepared by electrospinning. SEM micrographs and X-ray diffraction anal. indicated that the phthalocyanines uniformly immobilized on the surface of TiO2 nanofibers. Photocatalytic activity of TiO2, TiO2/Pc, TiO2/FPc, TiO2/FCoPc nanofibers for methylene blue in water was comparatively investigated firstly by ultravioletvisible absorption measurements with time, and kinetic parameters were calculated Results indicated that the obtained TiO2/Pc, TiO2/ FPc and TiO2/FCoPc exhibited high photocatalytic activity for the degradation of methylene blue and TiO2/FCoPc was found the best. It showed similar or higher activities than related studies and can be suggested as a promising candidate for environmental and energy applications.

Turkish Journal of Chemistry published new progress about Calcination. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Recommanded Product: Phthalonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhang, Chunyan’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2020 | CAS: 100-70-9

Chemical Communications (Cambridge, United Kingdom) published new progress about Cyclization. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.

Zhang, Chunyan published the artcileA practical base mediated synthesis of 1,2,4-triazoles enabled by a deamination annulation strategy, Recommanded Product: Picolinonitrile, the main research area is trisubstituted triazole preparation; nitrile hydrazine deamination annulation base mediated.

A rapid and efficient base mediated synthesis of 1,3,5-trisubstituted 1,2,4-triazoles I [R = i-Pr, Ph, 1-naphthyl, etc.; R1 = n-Bu, Ph, 2-furyl, etc.] was developed using the annulation of nitriles with hydrazines, which could be expanded to a wide range of triazoles in good to excellent yields. Ammonia gas was liberated during the reaction, and halo and hetero functional groups as well as free hydroxyl and amino groups are tolerated in this transformation. A variety of alkyl and aryl-substituted nitriles could be functionalized with aromatic and aliphatic hydrazines employing this procedure. This finding provided a practical and useful strategy for the synthesis of various 15N-labeled 1,2,4-triazole derivatives, and two types of mGlu5 receptor pharmaceuticals could be easily assembled in a one-pot manner.

Chemical Communications (Cambridge, United Kingdom) published new progress about Cyclization. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Chan, Joseph Y. M.’s team published research in Journal of Organic Chemistry in 2022-06-03 | CAS: 91-15-6

Journal of Organic Chemistry published new progress about Cyclization. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, HPLC of Formula: 91-15-6.

Chan, Joseph Y. M. published the artcile[3 + 1] Mixed Cyclization: A Synthetic Route to Prepare Low-Symmetry Phthalocyanines, HPLC of Formula: 91-15-6, the main research area is zinc phthalocyanine nanoparticle preparation; base promoted cyclization trisphthalonitrile metal template.

A novel synthetic strategy for low-symmetry phthalocyanines was developed, which involves the base-promoted cyclization of a preconnected trisphthalonitrile and a free phthalonitrile in the presence of a metal template. By using this [3 + 1] mixed cyclization approach, a series of zinc(II) phthalocyanine derivatives were synthesized in up to 12% yields, including a very rare ABCD-type phthalocyanine and an amphiphilic ABAC-type analog that can self-assemble in aqueous media, forming stable spherical nanoparticles.

Journal of Organic Chemistry published new progress about Cyclization. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, HPLC of Formula: 91-15-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zatsikha, Yuriy V.’s team published research in Journal of Organic Chemistry in 2021-03-19 | CAS: 91-15-6

Journal of Organic Chemistry published new progress about Cyclization. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, COA of Formula: C8H4N2.

Zatsikha, Yuriy V. published the artcileEnvironmentally Benign Route for Scalable Preparation of 1-Imino-3-thioisoindolines-The Key Building Blocks for the Synthesis of Dithio- and Diamino-β-isoindigo Derivatives, COA of Formula: C8H4N2, the main research area is imino thioisoindoline synthesis; dithio diamino beta isoindigo derivative synthesis.

A one-step, gram-scale protocol for the preparation of 1-imino-3-thioisoindolines and a novel one-pot two-step methodol. of the synthesis of dithio- or diamino-β-isoindigo derivatives starting from phthalonitriles and sodium hydrosulfide in an aprotic dipolar solvent have been developed. It was demonstrated that the electronic properties of the substituent(s) in the phthalonitrile core play a critical role in β-isoindigo synthesis resulting either in the selective formation of dithio- or diamino-β-isoindigo chromophores. The N-acylated 1-imino-3-thioisoindolines can be used for the direct, easily scalable, and chromatog.-free procedure for the preparation of a new class of N,N’-diacylamino-β-isoindigoid compounds Properties of the monomeric as well as J-aggregated forms of dithio- and diamino-β-isoindigo were probed by the absorption and fluorescence spectroscopies. It was demonstrated that the tetracyano-diamino-β-isoindigo 3f can form a J-aggregate that absorbs at 793 nm and fluoresces at 824 nm. This aggregate is stable in N,N-dimethylformamide solution; however, it slowly dissociates in THF or under sonication conditions. D. functional theory (DFT) and time-dependent DFT (TDDFT) calculations were employed to elucidate the electronic structures, spectroscopic properties, and aggregation of new dithio- and diamino-β-isoindigo derivatives

Journal of Organic Chemistry published new progress about Cyclization. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, COA of Formula: C8H4N2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhang, Han’s team published research in European Journal of Medicinal Chemistry in 2020-12-01 | CAS: 100-70-9

European Journal of Medicinal Chemistry published new progress about Cyclization. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Formula: C6H4N2.

Zhang, Han published the artcileDesign, synthesis and biological activities of piperidine-spirooxadiazole derivatives as α7 nicotinic receptor antagonists, Formula: C6H4N2, the main research area is benzyl aryl oxa triazaspiro decene preparation SAR; aryl oxa triazaspiro decene preparation mol docking SAR; Antagonists; Piperidine-spirooxadiazole derivatives; SAR; α7 nAChR.

7 Nicotinic acetylcholine receptors (nAChRs) expressed in the nervous and immune systems was suggested to play important roles in the control of inflammation. However, the lack of antagonist tools specifically inhibiting α7 nAChR impedes the validation of the channel as therapeutic target. To discover a selective α7 antagonist, a pharmacophore-based virtual screening and identified a piperidine-spirooxadiazole derivative T761-0184 that acts as a α7 antagonist. A series of novel piperidine-spirooxadiazole derivatives were subsequently synthesized and evaluated using two-electrode voltage clamp (TEVC) assay in Xenopus oocytes. Lead compounds from two series inhibited α7 with their IC50 values ranging from 3.3μM to 13.7μM. Compound 3-(4-Bromophenyl)-8-methyl-1-oxa-2,4,8-triazaspiro[4.5]dec-2-ene exhibited α7 selectivity over other α4β2 and α3β4 nAChR subtypes. The anal. of structure-activity relationship (SAR) provides valuable insights for further development of selective α7 nAChR antagonists.

European Journal of Medicinal Chemistry published new progress about Cyclization. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Formula: C6H4N2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Olgun, Ugursoy’s team published research in Journal of Materials Science: Materials in Electronics in 2021-06-30 | CAS: 91-15-6

Journal of Materials Science: Materials in Electronics published new progress about Absorption. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Quality Control of 91-15-6.

Olgun, Ugursoy published the artcileNano-gold-based synthesis, characterization and band gap energies of gold(III)-2(3)-tetrakis(allyloxy)-substituted phthalocyanine and gold(III)-phthalocyanine dyes, Quality Control of 91-15-6, the main research area is gold tetrakis allyloxy phthalocyanine band gap oxidation.

In this study, we have attempted to synthesize Au (III)-phthalocyanine (Au-Pc) and Au (III)-2 (3)-tetrakis (allyloxy) phthalocyanine (Au-AoPc) by using phthalonitrile (Pn), 3 allyloxy-substituted phthalonitrile (Ao-Pn) and gold nanoparticles (AuNPs) as the starting materials. The N,N′-dimethyl amino ethanol (DMAE)-stabilized AuNPs were prepared from the HAuCl4 solution The purple color AuNPs were obtained by the reduction of HAuCl4 solution by the addition of DMAE and adjusting pH 6-7 at room temperature Then, the blue color Au-Pc and the green color Au-AoPc dye materials were synthesized at 120 °C temperature by the reactions of the AuNPs with Pn and AoPn. The obtained AuNPs, Au-Pc and Au-AoPc complexes were characterized using optical microscopy, transmission electron microscopy (TEM), UV-Vis absorption, FT-IR and electrospray ionization-mass spectrometry. The TEM anal. results showed that the sizes of AuNPs were mostly 30-40 nm and distributed within the range of 10-100 nm. By using the Tauc method, the optical band gap energies (Eg) were calculated as 1.66 eV for the Q-band and 3.12 eV for the B-band of the Au-Pc, and as 1.79 eV for the Q-band and 3.32 eV for the B-band of the Au-AoPc. The DMAE-stabilized AuNPs, the Au-Pc and the soluble Au-AoPc dyes with low band gap energy can be utilized for various technologies in electronics, imaging, sensors and solar cells.

Journal of Materials Science: Materials in Electronics published new progress about Absorption. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Quality Control of 91-15-6.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Bhatia, Harsh’s team published research in Materials Advances in 2020 | CAS: 91-15-6

Materials Advances published new progress about Absorption. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Formula: C8H4N2.

Bhatia, Harsh published the artcileAsymmetric-donor (D2D2)-acceptor (A) conjugates for simultaneously accessing intrinsic blue-RTP and blue-TADF, Formula: C8H4N2, the main research area is donor acceptor photoluminescent room temperature phosphorescence.

The development of new photoluminescent (PL) materials with simultaneous room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) features is highly desirable for bio-imaging, security applications and sensors due to the involvement of both singlet and longer-lived triplet states. Here, we report two carbazolyl-phenoxy-phthalonitrile conjugates (CPPN, CPPNF). Spectroscopic studies combining two daughter compounds (PPN, PPNF) in polar and nonpolar hosts confirmed efficient blue-RTP from the higher-energy triplet state (TPPN) due to the phenoxy-phthalonitrile (PPN) part, and blue-TADF via reverse intersystem crossing from the low-lying triplet state (TCzPN) of the carbazolyl-phthalonitrile (CzPN) part to the singlet (S1) state of the same CzPN part, utilizing the TPPN state that acts as an intermediate for spin-vibronic coupling. Such PL characteristics are observed due to the energetic proximity of 3LEPPN, 1CTCzPN and 3CTCzPN. In the hydrogen-bonded matrix and crystals, we found faint persistent green-RTP characteristics of the PPNF due to supramol. interactions and aggregation of the mol. This study could pave the way to understanding the involvement of different excited states associated with TADF and RTP processes of asym.-donor-acceptor systems.

Materials Advances published new progress about Absorption. 91-15-6 belongs to class nitriles-buliding-blocks, name is Phthalonitrile, and the molecular formula is C8H4N2, Formula: C8H4N2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts