Chandrashekhar, Vishwas G.’s team published research in Science (Washington, DC, United States) in 2022 | CAS: 42872-30-0

Science (Washington, DC, United States) published new progress about Coupling reaction (hydrogenative). 42872-30-0 belongs to class nitriles-buliding-blocks, name is 2-(3-Benzoylphenyl)propanenitrile, and the molecular formula is C16H13NO, Quality Control of 42872-30-0.

Chandrashekhar, Vishwas G. published the artcileNickel-catalyzed hydrogenative coupling of nitriles and amines for general amine synthesis, Quality Control of 42872-30-0, the main research area is amine preparation; nitrile amine hydrogenative coupling nickel catalyzed.

A homogeneous nickel catalyst for hydrogenative cross coupling of a range of aromatic, heteroaromatic, and aliphatic nitriles with primary and secondary amines or ammonia to give amines was reported. This general hydrogenation protocol was showcased by straightforward and highly selective synthesis of >230 functionalized and structurally diverse amines including pharmaceutically relevant and chiral products, as well as 15N-isotope labeling applications.

Science (Washington, DC, United States) published new progress about Coupling reaction (hydrogenative). 42872-30-0 belongs to class nitriles-buliding-blocks, name is 2-(3-Benzoylphenyl)propanenitrile, and the molecular formula is C16H13NO, Quality Control of 42872-30-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Lang, Simon B.’s team published research in Organic Letters in 2014-08-15 | CAS: 42872-30-0

Organic Letters published new progress about Alkanes, nitro Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 42872-30-0 belongs to class nitriles-buliding-blocks, name is 2-(3-Benzoylphenyl)propanenitrile, and the molecular formula is C16H13NO, COA of Formula: C16H13NO.

Lang, Simon B. published the artcileActivation of Alcohols with Carbon Dioxide: Intermolecular Allylation of Weakly Acidic Pronucleophiles, COA of Formula: C16H13NO, the main research area is nitroalkane allyl alc carbon dioxide palladium allylation catalyst; nitrile allyl alc carbon dioxide palladium allylation catalyst; aldehyde allyl alc carbon dioxide palladium allylation catalyst; allylated product preparation.

The direct coupling of allyl alcs. with nitroalkanes, nitriles, and aldehydes using catalytic Pd(PPh3)4 has been accomplished via activation of C-OH bonds with CO2. The in situ formation of carbonates from alcs. and CO2 facilitates oxidative addition to Pd to form reactive π-allylpalladium intermediates. In addition, the formation of a strong base activates nucleophiles toward the reaction with the π-allylpalladium electrophile. Overall, this atom economical reaction provides a new C-C bond without the use of an external base and generates water as the only byproduct.

Organic Letters published new progress about Alkanes, nitro Role: RCT (Reactant), SPN (Synthetic Preparation), RACT (Reactant or Reagent), PREP (Preparation). 42872-30-0 belongs to class nitriles-buliding-blocks, name is 2-(3-Benzoylphenyl)propanenitrile, and the molecular formula is C16H13NO, COA of Formula: C16H13NO.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Kostyrko, E. O.’s team published research in Chemistry of Heterocyclic Compounds (New York, NY, United States) in 2006-07-31 | CAS: 73217-11-5

Chemistry of Heterocyclic Compounds (New York, NY, United States) published new progress about Hydrazines Role: RCT (Reactant), RACT (Reactant or Reagent). 73217-11-5 belongs to class nitriles-buliding-blocks, name is 2-(2-(Bromomethyl)phenyl)acetonitrile, and the molecular formula is C9H8BrN, Safety of 2-(2-(Bromomethyl)phenyl)acetonitrile.

Kostyrko, E. O. published the artcileSynthesis and properties of new functionalized 2-benzazepines, Safety of 2-(2-(Bromomethyl)phenyl)acetonitrile, the main research area is aryl cyanomethylbenzyl aminoacetic acid ester cyclization sodium methylate; benzazepine functionalized preparation.

2-Aryl-4-hydroxy-2,3-dihydro-1H-2-benzazepine-5-carbonitriles were obtained by the cyclization of Me esters of N-aryl-N-(2-cyanomethylbenzyl)aminoacetic acids by the action of sodium methylate. The keto-enol tautomerism of these compounds and their reactions with hydrazines were studied.

Chemistry of Heterocyclic Compounds (New York, NY, United States) published new progress about Hydrazines Role: RCT (Reactant), RACT (Reactant or Reagent). 73217-11-5 belongs to class nitriles-buliding-blocks, name is 2-(2-(Bromomethyl)phenyl)acetonitrile, and the molecular formula is C9H8BrN, Safety of 2-(2-(Bromomethyl)phenyl)acetonitrile.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Lukeman, Matthew’s team published research in Journal of the American Chemical Society in 2005-06-01 | CAS: 42872-30-0

Journal of the American Chemical Society published new progress about Elimination reaction kinetics (photochem.). 42872-30-0 belongs to class nitriles-buliding-blocks, name is 2-(3-Benzoylphenyl)propanenitrile, and the molecular formula is C16H13NO, Synthetic Route of 42872-30-0.

Lukeman, Matthew published the artcileCarbanion-mediated photocages: rapid and efficient photorelease with aqueous compatibility, Synthetic Route of 42872-30-0, the main research area is carbanion mediated photocage efficient photorelease aqueous compatibility; ketoprofen derivative photocage photolysis photorelease carboxylic acid alc.

A new photocage is proposed, based on ketoprofen-derived compounds and mediated by carbanions. The new photocage has significant advantages over the widely used o-nitrobenzyl derivatives, including aqueous compatibility, faster photorelease, higher quantum yield, and innocuous byproducts. The photorelease of ibuprofen illustrates the properties of the new photocage.

Journal of the American Chemical Society published new progress about Elimination reaction kinetics (photochem.). 42872-30-0 belongs to class nitriles-buliding-blocks, name is 2-(3-Benzoylphenyl)propanenitrile, and the molecular formula is C16H13NO, Synthetic Route of 42872-30-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhang, Zhengqing team published research in Journal of Membrane Science in 2022 | 1835-49-0

Quality Control of 1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Quality Control of 1835-49-0.

Zhang, Zhengqing;Cao, Xiaohao;Geng, Chenxu;Sun, Yuxiu;He, Yanjing;Qiao, Zhihua;Zhong, Chongli research published 《 Machine learning aided high-throughput prediction of ionic liquid@MOF composites for membrane-based CO2 capture》, the research content is summarized as follows. Ionic liquid encapsulated metal-organic framework (IL@MOF) composites as promising filler used for mixed matrix membranes (MMMs) fabrication to break the trade-off limitation. However, discovering appropriate IL@MOF composites effectively and cost-efficiently still faces a great challenge. In this study, we first construct the filler database consisting of 8167 IL@MOF composites by inserting [NH2-Pmim][Tf2N] mol. into computation-ready, exptl. metal-organic frameworks (CoRE MOFs). Using mol. simulation, we identified the best IL@MOF composites based on different metrics and revealed gas separation mechanism. Working with RF model (R2 > 0.72), we uncover that the AV and gASA are key factors in predicting the membrane selectivity and CO2 permeability, resp. The [NH2-Pmim][Tf2N]@ZIF-67 predicted can be as one of candidates for MMMs fabrication. The exptl. results show that CO2 permeability (9536 Barrer) and CO2/N2 selectivity (31.1) of [NH2-Pmim][Tf2N]@ZIF-67/PIM-1 have 121.3% (37.6%) and 32.6% (38.8%) enhancements compared with unfilled PIM-1 (ZIF-67/PIM-1), surpassing the updated CO2/N2 Jansen/McKeown upper bound. Our computational study could offer effective prediction and may trigger exptl. efforts to accelerate development of novel IL@MOF composites used for fabricating MMMs with excellent performance.

Quality Control of 1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhao, Genfu team published research in Nano Energy in 2022 | 1835-49-0

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , HPLC of Formula: 1835-49-0

Nitrile is any organic compound with a −C≡N functional group. 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. HPLC of Formula: 1835-49-0.

Zhao, Genfu;Xu, Lufu;Jiang, Jingwen;Mei, Zhiyuan;An, Qi;Lv, Pengpeng;Yang, Xiaofei;Guo, Hong;Sun, Xueliang research published 《 COFs-based electrolyte accelerates the Na+ diffusion and restrains dendrite growth in quasi-solid-state organic batteries》, the research content is summarized as follows. Solid-state sodium-ion batteries exhibit a great promising opportunity for the future energy storage, and thus exploring a high-efficiency sodium-ion conductor is the urgent challenge. Covalent organic frameworks (COFs) have accurately directional and well-defined ion channels and are a promising and optimal platform for solid-state Na-ion conductor. In this work, we study the first example of carboxylic acid sodium functionalized polyarylether linked COF (denoted as NaOOC-COF) as an advanced Na-ion quasi-solid-state conductor film. Benefiting from the well-defined ion channels, the functionalized NaOOC-COF exhibits an outstanding Na+ conductivity of 2.68 x 10-4 S cm-1 at room temperature, low activation energy (Ea) with 0.24 eV and high transference number of 0.9. Particularly, the NaOOC-COF shows long-time cycling performance in the assembled quasi-solid-state battery, and can restrain dendrite growth through interface regulation. Furthermore, the Na+ diffusion mechanism in whole-cell system is investigated thoroughly. Such extraordinary Na-ion transport result based on COFs is achieved for the first time. This novel strategy may exploit the new area of Na-ion quasi-solid-state electrolytic devices, and simultaneously accelerate the progress of functionalized COFs.

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , HPLC of Formula: 1835-49-0

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhao, Lu team published research in ACS Applied Materials & Interfaces in 2021 | 1835-49-0

Synthetic Route of 1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Synthetic Route of 1835-49-0.

Zhao, Lu;Zheng, Lu;Li, Xiaopeng;Wang, Han;Lv, Li-Ping;Chen, Shuangqiang;Sun, Weiwei;Wang, Yong research published 《 Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries》, the research content is summarized as follows. Potassium ion batteries (PIBs) are expected to become the next large-scale energy storage candidates due to its low cost and abundant resources. And the covalent organic framework (COF), with designable periodic organic structure and ability to organize redox active groups predictably, has been considering as the promising organic electrode candidate for PIB. Herein, we report the facile synthesis of the cyano-COF with Co coordination via a facile microwave digestion reaction and its application in the high-energy potassium ion batteries for the first time. The obtained COF-Co material exhibits the enhanced π-π accumulation and abundant defects originated from the Co interaction with the two-dimensional layered sheet structure of COF, which are beneficial for its energy-storage application. Adopted as the inorganic-metal boosted organic electrode for PIBs, the COF-Co with Co coordination can promote the formation of the π-K+ interaction, which could lead to the activation of aromatic rings for potassium-ion storage. Besides, the porous two-dimensional layered structure of COF-Co with abundant defects can also promote the shortened diffusion distance of ion/electron with promoted K+ insertion/extraction ability. Enhanced cycling stability with large reversible capacity (371 mAh g-1 after 400 cycles at 100 mA g-1) and good rate properties (105 mAh g-1 at 2000 mA g-1) have been achieved for the COF-Co electrode.

Synthetic Route of 1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhou, Bei team published research in Green Chemistry in 2022 | 20099-89-2

Recommanded Product: 4-(2-Bromoacetyl)benzonitrile, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Nitrile is any organic compound with a −C≡N functional group. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. Recommanded Product: 4-(2-Bromoacetyl)benzonitrile.

Zhou, Bei;He, Yu-Juan;Tao, Yun-Feng;Liu, Lan-Xiang;Hu, Min;Chang, Zu-Hui;Lei, Hong;Lin, Jun;Lin, Tong;Du, Guan-Ben research published 《 Electrocatalytic synthesis of α,α-gem-dihalide ketones from α-mono-halide ketones and unexpected dimer condensation》, the research content is summarized as follows. A novel, environmentally friendly electrocatalytic process was developed to prepare α,α-gem-dihalide (F, Cl, and Br) ketones from α-mono-halide ketones in an aqueous solution containing alkali halide salts. The gem-dihalides had the same or different halogens on the same carbon, depending on the reactant and inorganic halide salt used. An electron-withdrawing group, such as carbonyl, located at the α-site of mono-halogenated carbon, was essential to the reaction. The electrosyntheses were performed under ambient conditions without inert gas protection and displayed yields of about 80%. This method avoided the classical haloform elimination reaction. However, when the aqueous solution contained NaOH, two α-mono-halide ketone mols. had a special dimer condensation. The reaction mechanisms were explored by conducting GC-MS, EPR, and CV with DFT calculations These revealed that in situ generation of a halogen radical initiated electrocatalytic halogenation, while the dimer condensation involved a hydroxyl radical-mediated C1 fragment elimination.

Recommanded Product: 4-(2-Bromoacetyl)benzonitrile, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhou, Jinlei team published research in Organic Letters in 2022 | 20099-89-2

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Recommanded Product: 4-(2-Bromoacetyl)benzonitrile

Nitrile is any organic compound with a −C≡N functional group. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. Recommanded Product: 4-(2-Bromoacetyl)benzonitrile.

Zhou, Jinlei;Shi, Xiaotian;Zheng, Huitao;Chen, Guangxian;Zhang, Chen;Liu, Xiang;Cao, Hua research published 《 Deconstructive Cycloaromatization Strategy toward N,O-Bidentate Ligands from Indolizines and Cyclopropenones》, the research content is summarized as follows. Here, an unprecedented approach for the construction of polyaryl N,O-bidentate derivatives via the merging of ring deconstruction with cycloaromatization of indolizines and cyclopropenones was reported. Without any catalysts, this method could deliver a series of polyaryl 2-(pyridin-2-yl)phenols I [R1 = H, 4-Me, 5-Et, etc.; R2 = Me, cyclopropyl, Ph, etc.; Ar = Ph, 4-MeC6H4, 3-MeC6H4, 4-MeOC6H4, 2-thienyl] in excellent yields. In addition, N,O-bidentate organic BF2 complexes, e.g., II, could also be constructed via this one-pot protocol.

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Recommanded Product: 4-(2-Bromoacetyl)benzonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhou, Shiyuan team published research in Separation and Purification Technology in 2022 | 1835-49-0

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , Application of C8F4N2

Nitriles are found in many useful compounds. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons. 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Nitriles are found in many useful compounds. One of the most common occurrences of nitriles is in Nitrile rubber. Application of C8F4N2.

Zhou, Shiyuan;Gu, Peiyang;Wan, Haibo;Zhu, Yutao;Li, Najun;Chen, Dongyun;Marcomini, Antonio;Xu, Qingfeng;Lu, Jianmei research published 《 Preparation of new triptycene- and pentiptycene-based crosslinked polymers and their adsorption behavior towards aqueous dyes and phenolic organic pollutants》, the research content is summarized as follows. Rigid triptycene- and pentiptycene-based monomers, with intrinsic hierarchical structures, were polymerized using tetrafluoroterephthalonitrile as the crosslinker to fabricate crosslinked porous architectures named P1 and P2. The reaction is simple and can be conducted at a relatively mild temperature Both P1 and P2 exhibit good thermal stability, and good adsorption performance for dyes and phenolic organic pollutants including MB, MO, Pol and BPA. The removal efficiency of P2 is >99% within 10 min for BPA and an adsorption equilibrium for Pol can be reached within 5 min. The adsorption kinetics fit the pseudo-second-order model and the adsorption isotherms follow the Langmuir model and the maximum adsorption capacity of P1 and P2 for BPA can reach 212.06 mg g-1 and 330.02 mg g-1, resp. In addition, the obtained crosslinked polymers show a highly selective adsorption capacity towards phenolic organic pollutants. Featuring a simple synthesis, porous architecture and efficient adsorption capability, such triptycene-based and pentiptycene-based crosslinked polymers may be ideal adsorbents for water treatment and purification

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , Application of C8F4N2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts