Lakshmidevi, Jangam team published research in Sustainable Chemistry and Pharmacy in 2022 | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Category: nitriles-buliding-blocks

Nitrile is any organic compound with a −C≡N functional group. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate.The prefix cyano- is used interchangeably with the term nitrile in literature. Category: nitriles-buliding-blocks.

Lakshmidevi, Jangam;Ramesh Naidu, Bandameeda;Venkateswarlu, Katta research published 《 A rapid-room temperature synthesis of α-cyanoacrylates, α-cyanoacrylonitriles and 4H-pyrans using water extract of pomegranate ash as catalytic media》, the research content is summarized as follows. In this article we report a sustainable and rapid-room temperature synthesis of α-cyanoacrylonitriles, α-cyanoacrylates, and 4H-pyransvia the condensation of active methylene compounds with aldehydes, and a three-component reaction of 1,3-dicarbonyl compounds/4-hydroxycoumarins, active methylene compounds and acetylene dicarboxylates in water extract of pomegranate ash (WEPA). The agro-waste-derived WEPA acts both as catalyst and aqueous reaction medium. The products of this process were separated by simple filtration and purified by recrystallization This protocol did not require organic solvent-based work-up and column chromatog.-assisted purifications. The use of renewable catalytic media, good reusability of catalyst, ease of handling, ambient and depleting resources-based catalyst free conditions, avoid of volatile organic solvents throughout the process, excellent product yields, and actual usage of waste are the highlights of this process.

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Category: nitriles-buliding-blocks

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Laux, Julian team published research in ACS Pharmacology & Translational Science in 2022 | 105-34-0

Recommanded Product: Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Nitrile is any organic compound with a −C≡N functional group. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate.The prefix cyano- is used interchangeably with the term nitrile in literature. Recommanded Product: Methyl 2-cyanoacetate.

Laux, Julian;Forster, Michael;Riexinger, Laura;Schwamborn, Anna;Guezguez, Jamil;Pokoj, Christina;Kudolo, Mark;Berger, Lena M.;Knapp, Stefan;Schollmeyer, Dieter;Guse, Jan;Burnet, Michael;Laufer, Stefan A. research published 《 Pharmacokinetic Optimization of Small Molecule Janus Kinase 3 Inhibitors to Target Immune Cells》, the research content is summarized as follows. Modulation of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling is a promising method of treating autoimmune diseases, and the profound potency of clin. compounds makes this mode of action particularly attractive. Other questions that remain unanswered also include: What is the ideal selectivity between JAK1 and JAK3? Which cells are most relevant to JAK blockade? And what is the ideal tissue distribution pattern for addressing specific autoimmune conditions? We hypothesized that JAK3 selectivity is most relevant to low-dose clin. effects and interleukin-10 (IL-10) stimulation in particular, that immune cells are the most important compartment, and that distribution to inflamed tissue is the most important pharmacokinetic characteristic for in vivo disease modification. To test these hypotheses, we prepared modified derivatives of JAK3 specific inhibitors that target C909 near the ATP binding site based on FM-381, first reported in 2016; a compound class that was hitherto limited in uptake and exposure in vivo. These limits appear to be due to metabolic instability of side groups binding in the selectivity pocket. We identified derivatives with improved stability and tissue exposure. Conjugation to macrolide scaffolds with medium chain linkers was sufficient to stabilize the compounds and improve transport to organs while maintaining JAK3 affinity. These conjugates are inflammation targeted JAK3 inhibitors with long tissue half-lives and high exposure to activated immune cells.

Recommanded Product: Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Lebrun, Stewart team published research in Toxicology In Vitro in 2022 | 105-34-0

Safety of Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Nitrile is any organic compound with a −C≡N functional group. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate.The prefix cyano- is used interchangeably with the term nitrile in literature. Safety of Methyl 2-cyanoacetate.

Lebrun, Stewart;Chavez, Sara;Chan, Roxanne;Nguyen, Linda;Jester, James V. research published 《 Ascorbic acid specifically reduces the misclassification of nonirritating reactive chemicals in the OptiSafe macromolecular eye irritation test》, the research content is summarized as follows. Recently, we showed that the addition of physiol. concentrations of ascorbic acid, a tear antioxidant, to the OptiSafe macromol. eye irritation test reduced the false-pos. (FP) rate for chems. that had reactive chemistries, leading to the formation of reactive oxygen species (ROS) and mol. crosslinking. The purpose of the current study was to 1) increase the number of chems. tested to comprehensibly determine whether the antioxidant-associated reduction in OD is specific to FP chems. associated with ROS chemistries and 2) determine whether the addition of antioxidants interferes with the detection of true pos. (TP) and true neg. (TN) ocular irritants. We report that when ascorbic acid is added to the test reagents, retesting of FP chems. with reactive chemistries show significantly reduced OD values (P < 0.05). Importantly, ascorbic acid had no significant effect on the OD values of TP or TN chems. regardless of chem. reactivity. These findings suggest that supplementation of ascorbic acid in alternative ocular irritation tests may help improve the detection of TN for those commonly misclassified reactive chems.

Safety of Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Lee, Sunhee team published research in Journal of Organic Chemistry in 2021 | 105-34-0

Name: Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Nitrile is any organic compound with a −C≡N functional group. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate.The prefix cyano- is used interchangeably with the term nitrile in literature. Name: Methyl 2-cyanoacetate.

Lee, Sunhee;Kim, Sunmi;Yoon, Seok Hyun;Dagar, Anuradha;Kim, Ikyon research published 《 Diastereoselective Synthesis of Densely Functionalized 3a,8a-Dihydro-8H-furo[3,2-a]pyrrolizines through One-Pot Three-Component Assembly》, the research content is summarized as follows. A new domino mode of assembly was discovered from the one-pot three-component reactions of pyrroles, active methylene compounds (malononitrile, Me cyanoacetate, or Et cyanoacetate), and sodium cyanide in the presence of piperidinium acetate in EtOH at room temperature, leaded to a tricyclic skeleton in excellent yield under mild and eco-friendly conditions. This well-choreographed domino process enabled formation of multiple bonds (three C-C and one C-O) for consecutive construction of two rings (pyrrolidine and dihydrofuran) in a diastereoselective manner.

Name: Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Li, Jing team published research in Chemistry – A European Journal in 2021 | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Application of C4H5NO2

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Application of C4H5NO2.

Li, Jing;Lear, Martin J.;Hayashi, Yujiro research published 《 Direct Cyclopropanation of α-Cyano β-Aryl Alkanes by Light-Mediated Single Electron Transfer Between Donor-Acceptor Pairs》, the research content is summarized as follows. The one-pot intermol. cyclopropanation of alkanes by redox active C1 units has remained unrealised. Herein, authors achieved this process simply by exposing β-aryl propionitriles and C1 radical precursors (N-oxy esters) to base and blue light. The overall process is redox-neutral and a photocatalyst, whether metal- or organic-based, is not required. Findings support that single electron transfer (SET) from the α-cyano carbanion of the propionitrile to the N-oxy ester is facilitated by blue-light via their electron donor-acceptor (EDA) complex. The α-cyano carbon radical thus formed can then lose a β-proton to form a π-resonance stabilized radical anion that preferentially couples at the benzylic β-position with a decarboxylated C1 radical unit. This new transition metal-free chem. tolerates both electron rich and electron deficient (hetero)aryl systems, even sulfide or alkene functionality, to afford a range of cis-aryl/cyano cyclopropanes bearing congested tetrasubstituted quaternary carbons.

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Application of C4H5NO2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Karpov, Sergey team published research in Tetrahedron Letters in 2020 | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Recommanded Product: Methyl 2-cyanoacetate

Nitriles are found in many useful compounds. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Nitriles are found in many useful compounds. One of the most common occurrences of nitriles is in Nitrile rubber. Recommanded Product: Methyl 2-cyanoacetate.

Karpov, Sergey;Kayukov, Yakov;Grigor’ev, Arthur;Nasakin, Oleg;Kayukova, Olga;Tafeenko, Viktor research published ã€?Synthesis and solid-state luminescence of highly-substituted 6-amino-2H-pyran-2-one derivativesã€? the research content is summarized as follows. A fast and convenient synthesis and solid-state luminescence properties of new highly-substituted 6-amino-2H-pyran-2-one derivatives is described. These compounds were obtained from inexpensive and available 2-acyl(aroyl)-1,3-dicyano-1,3-bis-methoxycarbonylpropenides via regioselective heterocyclization under the action of sulfuric and hydroiodic acid. Compounds containing 6-amino-2H-pyran-2-one moiety are nearly unstudied, but are of interest for obtaining condensed biol. active compounds based on this scaffold.

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Recommanded Product: Methyl 2-cyanoacetate

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Kerru, Nagaraju team published research in Research on Chemical Intermediates in 2020 | 105-34-0

COA of Formula: C4H5NO2, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. COA of Formula: C4H5NO2.

Kerru, Nagaraju;Gummidi, Lalitha;Bhaskaruni, Sandeep V. H. S.;Maddila, Surya Narayana;Jonnalagadda, Sreekantha B. research published ã€?One-pot green synthesis of novel 5,10-dihydro-1H-pyrazolo[1,2-b]phthalazine derivatives with eco-friendly biodegradable eggshell powder as efficacious catalystã€? the research content is summarized as follows. An eco-friendly and efficient green protocol was developed for the synthesis of pyrazolo[1,2-b]phthalazine derivatives I [Ar = 4-MeSC6H4, 2-MeOC6H4, 3-indolyl, etc.; X = CN, CO(O)Me, CO(O)Et] by using inexpensive biodegradable eggshell powder (ESP) as a heterogeneous catalyst. The four-component one-pot condensation reaction proceeded through Knoevenagel-Michael reaction of active methylene compounds, phthalic anhydride and hydrazine hydrate with substituted aromatic aldehydes in water at 60°C, and gave high yields (93-98%) in 28-45 min. The ESP material was characterized by different anal. techniques (SEM, TEM, XRD, BET, and FT-IR), and was composed of the high percentage of calcium oxides and carbonates, and less percentage of Na and Mg elements (based on EDX anal.). The ESP material displayed recyclability (4 times) without any notable loss of catalytic efficacy. This procedure offered 98% of the atom economy and 100% of carbon efficiency together with significant fiscal and enviro-friendly benefits.

COA of Formula: C4H5NO2, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Khusnutdinov, R. I. team published research in Russian Journal of Organic Chemistry in 2021 | 105-34-0

Electric Literature of 105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Electric Literature of 105-34-0.

Khusnutdinov, R. I.;Shchadneva, N. A.;Mayakova, Yu. Yu.;Aminov, R. I. research published ã€?Condensation of Diamantan-3-one with Malononitrile and Methyl and Ethyl Cyanoacetates in the Presence of Binder-Free FeHY and NiHy Zeolitesã€? the research content is summarized as follows. Binder-free iron- and nickel-containing micro-, meso-, and macroporous zeolites FeHY and NiHY were found to effectively catalyzed Knoevenagel condensation of diamantan-3-one with malononitrile, Me cyanoacetate, and Et cyanoacetate at 40°C (5 h) with 94-98% yield.

Electric Literature of 105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Ivanov, Konstantin L. team published research in Synthesis in 2020 | 105-34-0

COA of Formula: C4H5NO2, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Nitrile is any organic compound with a −C≡N functional group. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate.The prefix cyano- is used interchangeably with the term nitrile in literature. COA of Formula: C4H5NO2.

Ivanov, Konstantin L.;Tukhtaev, Hamidulla B.;Tukhtaeva, Feruza O.;Bezzubov, Stanislav I.;Melnikov, Mikhail Ya.;Budynina, Ekaterina M. research published ã€?One-Pot Synthesis of γ-Azidobutyronitriles and Their Intramolecular Cycloadditionsã€? the research content is summarized as follows. Efficient gram-scale, one-pot approached to azidocyanobutyrates and their amidated or decarboxylated derivatives was developed, starting from com. available aldehydes and cyanoacetates. These techniques combine (1) Knoevenagel condensation, (2) Corey-Chaykovsky cyclopropanation and (3) nucleophilic ring opening of donor-acceptor cyclopropanes with the azide ion, as well as (4) Krapcho decarboxylation or (4′) amidation. The synthetic utility of the resulting γ-azidonitriles was demonstrated by their transformation into tetrazoles via intramol. (3+2)-cycloaddition A condition-dependent activation effect of the α-substituent was revealed in that case. Thermally activated azide-nitrile interaction did not differentiate the presence of an α-electron-withdrawing substituent in γ-azidonitriles, whereas the Lewis acid mediated (SnCl4or TiCl4) reaction proceeded much easier for azidocyanobutyrates. This allowed us to develop an efficient procedure for converting azidocyanobutyrates into the corresponding tetrazoles.

COA of Formula: C4H5NO2, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Ivanov, Konstantin L. team published research in Synthesis in 2021 | 105-34-0

Safety of Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Safety of Methyl 2-cyanoacetate.

Ivanov, Konstantin L.;Melnikov, Mikhail Ya.;Budynina, Ekaterina M. research published �Reductive Knoevenagel Condensation with the Zn-AcOH System� the research content is summarized as follows. An efficient gram-scale one-pot approach to 2-substituted malonates and related structures were developed, starting from com. available aldehydes and active methylene compounds The technique combines Knoevenagel condensation with the reduction of the C=C bond in the resulting activated alkenes with the Zn-AcOH system. The relative ease with which the C=C bond reduction occurs can be traced to the accepting abilities of the substituents in the intermediate arylidene malonates.

Safety of Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts